Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > How to grow wires and tiny plates Liquid processing method developed at MIT can control the shapes of nanowires and produce complete electronic devices

Nanostructures are directly synthesized in parallel microfluidic channels (held by the metal frame) by flowing special chemical reactant solution through the tubing. The microfluidic not only creates the functional device, but is also the final packaged functional LED device itself.
Photo: Jaebum Joo
Nanostructures are directly synthesized in parallel microfluidic channels (held by the metal frame) by flowing special chemical reactant solution through the tubing. The microfluidic not only creates the functional device, but is also the final packaged functional LED device itself. Photo: Jaebum Joo

Abstract:
Researchers at MIT have found a way to control precisely the shapes of submicroscopic wires deposited from a solution — using a method that makes it possible to produce entire electronic devices through a liquid-based process.

How to grow wires and tiny plates Liquid processing method developed at MIT can control the shapes of nanowires and produce complete electronic devices

Cambridge, MA | Posted on July 14th, 2011

The team demonstrated the technique by producing a functional light-emitting diode (LED) array made of zinc oxide nanowires in a single beaker, instead of the several separate steps and devices required for conventional production. They were able to do so under relatively benign conditions, with moderate temperatures and no vacuum needed.

Unlike larger structures, with nanomaterials — those with dimensions measured in nanometers, or billionths of a meter — differences in shape can lead to dramatic differences in behavior. "For nanostructures, there's a coupling between the geometry and the electrical and optical properties," explains Brian Chow, a postdoc at MIT and co-author of a paper describing the results that was published July 10 in the journal Nature Materials. "Being able to tune the geometry is very powerful," he says. The system Chow and his colleagues developed can precisely control the aspect ratio (the ratio of length to width) of the nanowires to produce anything from flat plates to long thin wires.

There are other ways of making such nanowires, Chow says. "People have done a good job of controlling the morphology of wires by other means — using high temperatures, high pressure, or subtractive processing. But to be able to do this under these benign conditions is attractive," because it makes it possible to integrate such devices with relatively fragile materials such as polymers and plastics, he says.

Control over the shapes of the wires has until now been essentially a trial-and-error process. "We were trying to find out what is the controlling factor," explains Jaebum Joo PhD '10, who was the lead author of the paper.

The key turns out to be the electrostatic properties of the zinc oxide material as it grows from a solution, they found. Different compounds, when added to the solution, attach themselves electrostatically only to certain parts of the wire — just to the sides, or just to the ends — inhibiting the wire's growth in those directions. The amount of inhibition depends on the specific properties of the added compounds.

While this work was done with zinc oxide nanowires — a promising material that is being widely studied by researchers — the MIT scientists believe the method they developed for controlling the shape of the wires "can be expanded to different material systems," Joo says, perhaps including titanium dioxide which is being investigated for devices such as solar cells. Because the benign assembly conditions allow the material to be deposited on plastic surfaces, he says, it might enable the development of flexible display panels, for example.

But there are also many potential applications using the zinc oxide material itself, including the production of batteries, sensors, and optical devices. And the processing method has "the potential for large-scale manufacturing," Joo says.

The team also hopes to be able to use the method to make "spatially complex devices from the bottom up, out of biocompatible polymers." These could be used, for example, to make tiny devices that could be implanted in the brain to provide both sensing and stimulation.

In addition to Joo and Chow, the research was carried out by visiting scholar Manu Prakesh, along with Media Lab associate professors Edward Boyden and Joseph Jacobson. It was funded by the MIT Center for Bits and Atoms; the MIT Media Lab; the Korea Foundation for Advanced Studies; Samsung Electronics; the Harvard Society of Fellows; the Wallace H. Coulter Early Career Award; the NARSAD Young Investigator Award; the National Science Foundation; and the NIH Director's New Innovator Award.

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Breakthrough in OLED technology March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

JunPus launched high-performance thermal grease for LED February 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Sensors

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Discoveries

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Photonics/Optics/Lasers

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE