Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > How to grow wires and tiny plates Liquid processing method developed at MIT can control the shapes of nanowires and produce complete electronic devices

Nanostructures are directly synthesized in parallel microfluidic channels (held by the metal frame) by flowing special chemical reactant solution through the tubing. The microfluidic not only creates the functional device, but is also the final packaged functional LED device itself.
Photo: Jaebum Joo
Nanostructures are directly synthesized in parallel microfluidic channels (held by the metal frame) by flowing special chemical reactant solution through the tubing. The microfluidic not only creates the functional device, but is also the final packaged functional LED device itself. Photo: Jaebum Joo

Abstract:
Researchers at MIT have found a way to control precisely the shapes of submicroscopic wires deposited from a solution — using a method that makes it possible to produce entire electronic devices through a liquid-based process.

How to grow wires and tiny plates Liquid processing method developed at MIT can control the shapes of nanowires and produce complete electronic devices

Cambridge, MA | Posted on July 14th, 2011

The team demonstrated the technique by producing a functional light-emitting diode (LED) array made of zinc oxide nanowires in a single beaker, instead of the several separate steps and devices required for conventional production. They were able to do so under relatively benign conditions, with moderate temperatures and no vacuum needed.

Unlike larger structures, with nanomaterials — those with dimensions measured in nanometers, or billionths of a meter — differences in shape can lead to dramatic differences in behavior. "For nanostructures, there's a coupling between the geometry and the electrical and optical properties," explains Brian Chow, a postdoc at MIT and co-author of a paper describing the results that was published July 10 in the journal Nature Materials. "Being able to tune the geometry is very powerful," he says. The system Chow and his colleagues developed can precisely control the aspect ratio (the ratio of length to width) of the nanowires to produce anything from flat plates to long thin wires.

There are other ways of making such nanowires, Chow says. "People have done a good job of controlling the morphology of wires by other means — using high temperatures, high pressure, or subtractive processing. But to be able to do this under these benign conditions is attractive," because it makes it possible to integrate such devices with relatively fragile materials such as polymers and plastics, he says.

Control over the shapes of the wires has until now been essentially a trial-and-error process. "We were trying to find out what is the controlling factor," explains Jaebum Joo PhD '10, who was the lead author of the paper.

The key turns out to be the electrostatic properties of the zinc oxide material as it grows from a solution, they found. Different compounds, when added to the solution, attach themselves electrostatically only to certain parts of the wire — just to the sides, or just to the ends — inhibiting the wire's growth in those directions. The amount of inhibition depends on the specific properties of the added compounds.

While this work was done with zinc oxide nanowires — a promising material that is being widely studied by researchers — the MIT scientists believe the method they developed for controlling the shape of the wires "can be expanded to different material systems," Joo says, perhaps including titanium dioxide which is being investigated for devices such as solar cells. Because the benign assembly conditions allow the material to be deposited on plastic surfaces, he says, it might enable the development of flexible display panels, for example.

But there are also many potential applications using the zinc oxide material itself, including the production of batteries, sensors, and optical devices. And the processing method has "the potential for large-scale manufacturing," Joo says.

The team also hopes to be able to use the method to make "spatially complex devices from the bottom up, out of biocompatible polymers." These could be used, for example, to make tiny devices that could be implanted in the brain to provide both sensing and stimulation.

In addition to Joo and Chow, the research was carried out by visiting scholar Manu Prakesh, along with Media Lab associate professors Edward Boyden and Joseph Jacobson. It was funded by the MIT Center for Bits and Atoms; the MIT Media Lab; the Korea Foundation for Advanced Studies; Samsung Electronics; the Harvard Society of Fellows; the Wallace H. Coulter Early Career Award; the NARSAD Young Investigator Award; the National Science Foundation; and the NIH Director's New Innovator Award.

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Display technology/LEDs/SS Lighting/OLEDs

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Sensors

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Nanoelectronics

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

GLOBALFOUNDRIES on Track to Deliver Leading-Performance 7nm FinFET Technology: New 7LP technology offers 40 percent performance boost over 14nm FinFET June 13th, 2017

Seeing the invisible with a graphene-CMOS integrated device June 6th, 2017

IBM Research Alliance Builds New Transistor for 5nm Technology: Less than two years since announcing a 7nm test chip, scientists have achieved another breakthrough June 5th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Photonics/Optics/Lasers

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water June 15th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project