Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > How to grow wires and tiny plates Liquid processing method developed at MIT can control the shapes of nanowires and produce complete electronic devices

Nanostructures are directly synthesized in parallel microfluidic channels (held by the metal frame) by flowing special chemical reactant solution through the tubing. The microfluidic not only creates the functional device, but is also the final packaged functional LED device itself.
Photo: Jaebum Joo
Nanostructures are directly synthesized in parallel microfluidic channels (held by the metal frame) by flowing special chemical reactant solution through the tubing. The microfluidic not only creates the functional device, but is also the final packaged functional LED device itself. Photo: Jaebum Joo

Abstract:
Researchers at MIT have found a way to control precisely the shapes of submicroscopic wires deposited from a solution — using a method that makes it possible to produce entire electronic devices through a liquid-based process.

How to grow wires and tiny plates Liquid processing method developed at MIT can control the shapes of nanowires and produce complete electronic devices

Cambridge, MA | Posted on July 14th, 2011

The team demonstrated the technique by producing a functional light-emitting diode (LED) array made of zinc oxide nanowires in a single beaker, instead of the several separate steps and devices required for conventional production. They were able to do so under relatively benign conditions, with moderate temperatures and no vacuum needed.

Unlike larger structures, with nanomaterials — those with dimensions measured in nanometers, or billionths of a meter — differences in shape can lead to dramatic differences in behavior. "For nanostructures, there's a coupling between the geometry and the electrical and optical properties," explains Brian Chow, a postdoc at MIT and co-author of a paper describing the results that was published July 10 in the journal Nature Materials. "Being able to tune the geometry is very powerful," he says. The system Chow and his colleagues developed can precisely control the aspect ratio (the ratio of length to width) of the nanowires to produce anything from flat plates to long thin wires.

There are other ways of making such nanowires, Chow says. "People have done a good job of controlling the morphology of wires by other means — using high temperatures, high pressure, or subtractive processing. But to be able to do this under these benign conditions is attractive," because it makes it possible to integrate such devices with relatively fragile materials such as polymers and plastics, he says.

Control over the shapes of the wires has until now been essentially a trial-and-error process. "We were trying to find out what is the controlling factor," explains Jaebum Joo PhD '10, who was the lead author of the paper.

The key turns out to be the electrostatic properties of the zinc oxide material as it grows from a solution, they found. Different compounds, when added to the solution, attach themselves electrostatically only to certain parts of the wire — just to the sides, or just to the ends — inhibiting the wire's growth in those directions. The amount of inhibition depends on the specific properties of the added compounds.

While this work was done with zinc oxide nanowires — a promising material that is being widely studied by researchers — the MIT scientists believe the method they developed for controlling the shape of the wires "can be expanded to different material systems," Joo says, perhaps including titanium dioxide which is being investigated for devices such as solar cells. Because the benign assembly conditions allow the material to be deposited on plastic surfaces, he says, it might enable the development of flexible display panels, for example.

But there are also many potential applications using the zinc oxide material itself, including the production of batteries, sensors, and optical devices. And the processing method has "the potential for large-scale manufacturing," Joo says.

The team also hopes to be able to use the method to make "spatially complex devices from the bottom up, out of biocompatible polymers." These could be used, for example, to make tiny devices that could be implanted in the brain to provide both sensing and stimulation.

In addition to Joo and Chow, the research was carried out by visiting scholar Manu Prakesh, along with Media Lab associate professors Edward Boyden and Joseph Jacobson. It was funded by the MIT Center for Bits and Atoms; the MIT Media Lab; the Korea Foundation for Advanced Studies; Samsung Electronics; the Harvard Society of Fellows; the Wallace H. Coulter Early Career Award; the NARSAD Young Investigator Award; the National Science Foundation; and the NIH Director's New Innovator Award.

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Display technology/LEDs/SS Lighting/OLEDs

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Missing atoms in a forgotten crystal bring luminescence October 10th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Discoveries

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Photonics/Optics/Lasers

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project