Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > IC Knowledge's cost modeling of semiconductor manufacturing shows FD-SOI technology to be the most cost-effective approach at the 22 nm node: FD-SOI Determined to Be More Economical Than Planar Bulk Silicon CMOS Processing

Abstract:
Research firm IC Knowledge LLC has completed a comprehensive cost analysis that determines fully depleted silicon-on-insulator (FD-SOI) wafers offer the global semiconductor industry the most cost effective solution compared to bulk silicon for processing semiconductor devices at the next-generation 22 nm technology node and beyond.

IC Knowledge's cost modeling of semiconductor manufacturing shows FD-SOI technology to be the most cost-effective approach at the 22 nm node: FD-SOI Determined to Be More Economical Than Planar Bulk Silicon CMOS Processing

Georgetown, MA | Posted on July 13th, 2011

"FD-SOI offers the potential for significant process simplification, making it cost competitive while simultaneously offering performance improvements over bulk silicon," said Scotten W. Jones, president of IC Knowledge. "The ability to use fewer steps enables FD-SOI's greater cost efficiency."

In particular, FD-SOI processing dramatically decreases the number of implant masks and implant steps needed. Although implant-related costs are relatively low, FD-SOI's fewer total processing steps offers a simpler overall process flow.

"Fully depleted SOI is the key," Jones added.

In conducting its analysis, IC Knowledge worked with a wafer-processing consultant and Soitec, the world leader in SOI wafer manufacturing, to define three sample process flows representative of state-of-the-art industry practices for the 22 nm node: one planar bulk CMOS and two versions of FD-SOI - with implanted source/drain or with in-situ doped source/drain.

All process flows assumed three threshold voltages, dual gate oxides and suitability for system-on-a-chip (SOC) applications. The bulk CMOS process assumed a suite of mobility-enhancing stressors. The two FD-SOI process flows, on top of relevant mobility-enhancing stressors, also assumed multiple features such as n+ and p+ back-gates and n-well and p-well implants under the buried oxide (BOx) layer, access to the n-well and p-well, two shallow-trench isolation depths and electro-static discharge (ESD) devices in a bulk area. The same gate integration schemes (gate-last high-k metal gate) and number of metal layers (eight) were assumed in all scenarios. For SOI, a volume pricing of $500 per starting wafer was added. For bulk silicon, an aggressive price of $130 per (epi) starting wafer was selected.

IC Knowledge then utilized its Strategic Cost Model to evaluate how each process flow would perform in a Taiwanese wafer fab producing 30,000 wafers per month in the 2012 timeframe. The scenario generator considered the costs of starting wafers, direct and in-direct labor, depreciation of the wafer fab, equipment maintenance, monitor wafers, facilities such as electricity, and consumables such as reticle sets, gases and chemicals. Calculations of the cost per wafer yielded used in the model have been validated by IC Knowledge using wafer cost data collected from fabs throughout the semiconductor industry.

The Strategic Cost Model's analysis determined that the most economical yielded-wafer cost was achieved by FD-SOI processing with in-situ doped source/drain, at approximately $3,000 per wafer. Furthermore, both versions of FD-SOI were determined to be extremely cost competitive compared to bulk CMOS. The study found only about one percent difference in the cost of yielded processed wafers produced by the second FD-SOI option - with implanted source/drain - and bulk CMOS.

Because this analysis is strictly based on costs, IC Knowledge's findings do not address FD-SOI's superiority to bulk silicon in producing semiconductors with lower leakage and faster processing speeds or compare the performance of SOI and bulk silicon in processing multi-gate transistors at the 22 nm node and beyond.

####

About IC Knowledge LLC
IC Knowledge is the world leader in cost modeling for the semiconductor and MEMS industries. In addition to custom projects IC Knowledge offers a variety of cost modeling tools as well as reports, databases and forecasts. IC Knowledge’s customers include leading semiconductor and MEMS companies, OEMs, fabless design houses, system manufacturers, industry analysts and many others.

For more information, please click here

Contacts:
Scotten W. Jones
President
IC Knowledge LLC
Ph: (978) 352 – 7610


Copyright © IC Knowledge LLC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The report is available on:

Related News Press

News and information

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Chip Technology

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Nanoelectronics

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Announcements

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE