Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 25 Tesla, world-record 'split magnet' makes its debut

Interior parts for the split coil magnet were tested and retested to ensure the magnet’s structural integrity.

Credit: Florida State University
Interior parts for the split coil magnet were tested and retested to ensure the magnet’s structural integrity.

Credit: Florida State University

Abstract:
A custom-built, $2.5 million "split magnet" system with the potential to revolutionize scientific research in a variety of fields has made its debut at the National High Magnetic Field Laboratory at Florida State University.

25 Tesla, world-record 'split magnet' makes its debut

Tallahassee, FL | Posted on July 13th, 2011

The world-record magnet is operating at 25 tesla, easily besting the 17.5 tesla French record set in 1991 for this type of magnet. ("Tesla," named for early 20th-century inventor and engineer Nikola Tesla, is a measurement of the strength of a magnetic field.) In addition to being 43 percent more powerful than the previous world best, the new magnet also has 1,500 times as much space at its center, allowing room for more flexible, varied experiments.

To offer some perspective on the strength of the new magnet, consider this: Twenty-five tesla is equal to a whopping 500,000 times the Earth's magnetic field. Imagine that much power focused on a very small space and you have some idea what the split magnet is capable of — and why both engineers and scientists at the magnet lab are so excited.

"The Mag Lab has developed numerous world-record magnets; however, the split magnet makes the largest single step forward in technology over the past 20 years," said Mark Bird, director of the laboratory's Magnet Science and Technology division.

For decades, scientists have used high magnetic fields to probe the unusual properties of materials under extreme conditions of heat and pressure. There are unique benefits that arise at especially high magnetic fields — certain atoms or molecules become more easily observable, for example, or exhibit properties that are difficult to observe under less extreme conditions. The powerful new split magnet system holds promise for even more breakthroughs at the very edge of human knowledge.

The new magnet was funded by the National Science Foundation and represents years of intense collaboration between the lab's engineering and research teams, headed by scholar/scientist Jack Toth of the Magnet Science and Technology staff.

The magnet's design required Toth's team to rethink the structural limits of resistive magnets — that is, those in which the magnetic field is produced by the flow of electric current. The project required that the engineers invent, patent and find sometimes-elusive builders for the technology that could carry their idea through. The result of their work, the new split magnet, features four large elliptical ports that provide scientists with direct, horizontal access to the magnet's central experimental space, or bore, while still maintaining a high magnetic field.

High-powered research magnets are created by packing together dense, high-performance copper alloys and running an electrical current through them. All of the magnet's forces are focused on the center of the magnet coil — right where Toth and his team engineered the four ports. Building a magnet system with ports strong enough to withstand such strong magnetic fields and such a heavy power load was once considered impossible.

To accomplish the impossible, Toth's team cut large holes in the mid-plane of the magnet to provide user access to the bore but maintain a high magnetic field. All of this had to be done while supporting 500 tons of pressure pulling the two halves of the magnet together and, at the same time, allowing 160,000 amps of electrical current and 3,500 gallons of water per minute to flow through the mid-plane. (The water is needed to keep the magnet from overheating.)

While the technological breakthroughs enabling the magnet's construction are important, the multidisciplinary research possibilities are even more exciting. Optics researchers in chemistry, physics and biology are poised to conduct research using the split magnet, while others are optimistic about the potential for breakthroughs in nanoscience and semiconductor research.

The magnet's first user, a scientist from Kent State University, has already begun conducting experiments.

"Among other research possibilities," said Eric Palm, director of the magnet lab's Direct Current User Program, "the split magnet will allow optics researchers unprecedented access to their samples, improve the quality of their data, and enable new types of experiments."

The National High Magnetic Field Laboratory develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for research. The laboratory is sponsored by the National Science Foundation and the state of Florida.

####

For more information, please click here

Contacts:
Jack Toth

850-644-0854

Copyright © Florida State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Physics

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Laboratories

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Connecting the (Nano) Dots: NIST Says Big-Picture Thinking Can Advance Nanoparticle Manufacturing August 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Tools

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Stress-free ALD from Picosun August 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project