Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 25 Tesla, world-record 'split magnet' makes its debut

Interior parts for the split coil magnet were tested and retested to ensure the magnet’s structural integrity.

Credit: Florida State University
Interior parts for the split coil magnet were tested and retested to ensure the magnet’s structural integrity.

Credit: Florida State University

Abstract:
A custom-built, $2.5 million "split magnet" system with the potential to revolutionize scientific research in a variety of fields has made its debut at the National High Magnetic Field Laboratory at Florida State University.

25 Tesla, world-record 'split magnet' makes its debut

Tallahassee, FL | Posted on July 13th, 2011

The world-record magnet is operating at 25 tesla, easily besting the 17.5 tesla French record set in 1991 for this type of magnet. ("Tesla," named for early 20th-century inventor and engineer Nikola Tesla, is a measurement of the strength of a magnetic field.) In addition to being 43 percent more powerful than the previous world best, the new magnet also has 1,500 times as much space at its center, allowing room for more flexible, varied experiments.

To offer some perspective on the strength of the new magnet, consider this: Twenty-five tesla is equal to a whopping 500,000 times the Earth's magnetic field. Imagine that much power focused on a very small space and you have some idea what the split magnet is capable of — and why both engineers and scientists at the magnet lab are so excited.

"The Mag Lab has developed numerous world-record magnets; however, the split magnet makes the largest single step forward in technology over the past 20 years," said Mark Bird, director of the laboratory's Magnet Science and Technology division.

For decades, scientists have used high magnetic fields to probe the unusual properties of materials under extreme conditions of heat and pressure. There are unique benefits that arise at especially high magnetic fields — certain atoms or molecules become more easily observable, for example, or exhibit properties that are difficult to observe under less extreme conditions. The powerful new split magnet system holds promise for even more breakthroughs at the very edge of human knowledge.

The new magnet was funded by the National Science Foundation and represents years of intense collaboration between the lab's engineering and research teams, headed by scholar/scientist Jack Toth of the Magnet Science and Technology staff.

The magnet's design required Toth's team to rethink the structural limits of resistive magnets — that is, those in which the magnetic field is produced by the flow of electric current. The project required that the engineers invent, patent and find sometimes-elusive builders for the technology that could carry their idea through. The result of their work, the new split magnet, features four large elliptical ports that provide scientists with direct, horizontal access to the magnet's central experimental space, or bore, while still maintaining a high magnetic field.

High-powered research magnets are created by packing together dense, high-performance copper alloys and running an electrical current through them. All of the magnet's forces are focused on the center of the magnet coil — right where Toth and his team engineered the four ports. Building a magnet system with ports strong enough to withstand such strong magnetic fields and such a heavy power load was once considered impossible.

To accomplish the impossible, Toth's team cut large holes in the mid-plane of the magnet to provide user access to the bore but maintain a high magnetic field. All of this had to be done while supporting 500 tons of pressure pulling the two halves of the magnet together and, at the same time, allowing 160,000 amps of electrical current and 3,500 gallons of water per minute to flow through the mid-plane. (The water is needed to keep the magnet from overheating.)

While the technological breakthroughs enabling the magnet's construction are important, the multidisciplinary research possibilities are even more exciting. Optics researchers in chemistry, physics and biology are poised to conduct research using the split magnet, while others are optimistic about the potential for breakthroughs in nanoscience and semiconductor research.

The magnet's first user, a scientist from Kent State University, has already begun conducting experiments.

"Among other research possibilities," said Eric Palm, director of the magnet lab's Direct Current User Program, "the split magnet will allow optics researchers unprecedented access to their samples, improve the quality of their data, and enable new types of experiments."

The National High Magnetic Field Laboratory develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for research. The laboratory is sponsored by the National Science Foundation and the state of Florida.

####

For more information, please click here

Contacts:
Jack Toth

850-644-0854

Copyright © Florida State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Physics

Record-high pressure reveals secrets of matter: The most incompressible metal osmium at static pressures above 750 GPa August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Biophysics: Formation of swarms in nanosystems August 18th, 2015

Attosecond physics: Attosecond electron catapult: Physicists from Ludwig-Maximilians-Universität (LMU) in Munich studied the interaction of light with tiny glass particles August 15th, 2015

Laboratories

Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases August 17th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Discoveries

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Tools

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic