Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 25 Tesla, world-record 'split magnet' makes its debut

Interior parts for the split coil magnet were tested and retested to ensure the magnetís structural integrity.

Credit: Florida State University
Interior parts for the split coil magnet were tested and retested to ensure the magnetís structural integrity.

Credit: Florida State University

Abstract:
A custom-built, $2.5 million "split magnet" system with the potential to revolutionize scientific research in a variety of fields has made its debut at the National High Magnetic Field Laboratory at Florida State University.

25 Tesla, world-record 'split magnet' makes its debut

Tallahassee, FL | Posted on July 13th, 2011

The world-record magnet is operating at 25 tesla, easily besting the 17.5 tesla French record set in 1991 for this type of magnet. ("Tesla," named for early 20th-century inventor and engineer Nikola Tesla, is a measurement of the strength of a magnetic field.) In addition to being 43 percent more powerful than the previous world best, the new magnet also has 1,500 times as much space at its center, allowing room for more flexible, varied experiments.

To offer some perspective on the strength of the new magnet, consider this: Twenty-five tesla is equal to a whopping 500,000 times the Earth's magnetic field. Imagine that much power focused on a very small space and you have some idea what the split magnet is capable of ó and why both engineers and scientists at the magnet lab are so excited.

"The Mag Lab has developed numerous world-record magnets; however, the split magnet makes the largest single step forward in technology over the past 20 years," said Mark Bird, director of the laboratory's Magnet Science and Technology division.

For decades, scientists have used high magnetic fields to probe the unusual properties of materials under extreme conditions of heat and pressure. There are unique benefits that arise at especially high magnetic fields ó certain atoms or molecules become more easily observable, for example, or exhibit properties that are difficult to observe under less extreme conditions. The powerful new split magnet system holds promise for even more breakthroughs at the very edge of human knowledge.

The new magnet was funded by the National Science Foundation and represents years of intense collaboration between the lab's engineering and research teams, headed by scholar/scientist Jack Toth of the Magnet Science and Technology staff.

The magnet's design required Toth's team to rethink the structural limits of resistive magnets ó that is, those in which the magnetic field is produced by the flow of electric current. The project required that the engineers invent, patent and find sometimes-elusive builders for the technology that could carry their idea through. The result of their work, the new split magnet, features four large elliptical ports that provide scientists with direct, horizontal access to the magnet's central experimental space, or bore, while still maintaining a high magnetic field.

High-powered research magnets are created by packing together dense, high-performance copper alloys and running an electrical current through them. All of the magnet's forces are focused on the center of the magnet coil ó right where Toth and his team engineered the four ports. Building a magnet system with ports strong enough to withstand such strong magnetic fields and such a heavy power load was once considered impossible.

To accomplish the impossible, Toth's team cut large holes in the mid-plane of the magnet to provide user access to the bore but maintain a high magnetic field. All of this had to be done while supporting 500 tons of pressure pulling the two halves of the magnet together and, at the same time, allowing 160,000 amps of electrical current and 3,500 gallons of water per minute to flow through the mid-plane. (The water is needed to keep the magnet from overheating.)

While the technological breakthroughs enabling the magnet's construction are important, the multidisciplinary research possibilities are even more exciting. Optics researchers in chemistry, physics and biology are poised to conduct research using the split magnet, while others are optimistic about the potential for breakthroughs in nanoscience and semiconductor research.

The magnet's first user, a scientist from Kent State University, has already begun conducting experiments.

"Among other research possibilities," said Eric Palm, director of the magnet lab's Direct Current User Program, "the split magnet will allow optics researchers unprecedented access to their samples, improve the quality of their data, and enable new types of experiments."

The National High Magnetic Field Laboratory develops and operates state-of-the-art, high-magnetic-field facilities that faculty and visiting scientists and engineers use for research. The laboratory is sponsored by the National Science Foundation and the state of Florida.

####

For more information, please click here

Contacts:
Jack Toth

850-644-0854

Copyright © Florida State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Scientists Design Molecular System for Artificial Photosynthesis: System is designed to mimic key functions of the photosynthetic center in green plants to convert solar energy into chemical energy stored by hydrogen fuel June 2nd, 2017

NRELís Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Physics

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Discoveries

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Announcements

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Tools

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

New TriboLab CMP Provides Cost-Effective Characterization of Chemical Mechanical Wafer Polishing Processes: Bruker Updates Industry-Standard CP-4 Platform for Most Flexible and Reliable Testing June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project