Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Supramolecules get time to shine: Rice technique reveals interactions between nanotubes, photoluminescent materials

Rice University researchers have found a way to bind carbon nanotubes to a porous silicate particles to create supramolecules. The new material allows researchers to test interactions between nanotubes and photoluminescent materials.
(Credit: Martí Lab/Rice University)
Rice University researchers have found a way to bind carbon nanotubes to a porous silicate particles to create supramolecules. The new material allows researchers to test interactions between nanotubes and photoluminescent materials.
(Credit: Martí Lab/Rice University)

Abstract:
What looks like a spongy ball wrapped in strands of yarn -- but a lot smaller -- could be key to unlocking better methods for catalysis, artificial photosynthesis or splitting water into hydrogen, according to Rice University chemists who have created a platform to analyze interactions between carbon nanotubes and a wide range of photoluminescent materials.

Supramolecules get time to shine: Rice technique reveals interactions between nanotubes, photoluminescent materials

Houston, TX | Posted on July 12th, 2011

The microscopic particles assembled in the lab of Angel Martí, an assistant professor of chemistry and bioengineering, combine single-walled carbon nanotubes with porous silicate materials that can absorb various molecules -- in this case, a ruthenium complex.

Martí, graduate student and lead author Avishek Saha and their colleagues reported their results today in the Royal Society of Chemistry journal Chemical Science.

The ability to immobilize individual carbon nanotubes on a solid surface is interesting enough, but combining supramolecular systems with nanomaterials to produce hybrids is unique, they said.

"This can be used as a general platform to study the interaction of not only ruthenium complexes, but most photoactive molecules can be encapsulated within these porous silicates in a very simple way without chemical modification, without anything," Marti said.

Saha endured trial and error at every step in bringing the new particles to fruition, first figuring out the best way to keep long, single-walled carbon nanotubes produced by the Rice-born HiPco process from aggregating into bundles while allowing them to adhere to the particles.

The solution suggested by co-author Matteo Pasquali, a Rice professor in chemical and biomolecular engineering and in chemistry, involved dissolving the bundles in chlorosulfonic acid, which added protons -- and thus a positive charge -- to each nanotube.

That was the key to making nanotubes attractive to the three types of silicate particles tested: a commercial version of MCM-41, a mesoporous material used as a molecular sieve; another version of MCM-41 synthesized at Rice by Saha, and microporous Zeolyte-Y.

"We don't fully understand the mechanism, but the truth is they have a very strong affinity to silicon oxide networks," said Marti, describing the nanotube-wrapped particles. "Once they're protonated, they just bind."

But that wasn't enough to create a proper platform because protonated nanoparticles are no longer photoluminescent, a quality the researchers required to "see" such tiny structures under a spectroscope. "Protonated nanotubes are cool, but we want to have pristine nanotubes," Martí said.

"We were stuck there for a while. We tried a lot of things," he said. Acetone, ammonia, chloroform and other substances would deprotonate the nanotubes, but would also release them from the silicate sponges and allow them to clump. But vinylpyrrolidone (VP) did the trick by giving the nanotubes a polymer-like coating while returning them to their pristine states.

"This becomes interesting not only from the standpoint of getting individualized nanotubes on top of a surface, but also because we got fluorescence of nanotubes not from a solution, but from a solid material," Martí said.

The experiment went one critical step further when the researchers introduced ruthenium molecules to the mix. The silicates absorbed the ruthenium molecules, putting them into close proximity with an array of nanotubes. Under a spectroscope, the ruthenium complexes would photoluminesce, but they saw something unexpected in the interaction.

"Basically, we found out that if you put a photoactive species (ruthenium) there and excite it with light, two different processes happen. If it has carbon nanotubes close by, it will transfer an electron to the nanotubes. There's a charge transfer, and we knew that would happen," Martí said. "What we didn't expect when we analyzed the spectrum was seeing two different species of ruthenium complexes, one with a very short photoluminescence lifetime and one very long."

The researchers theorized that ruthenium in the center of the sponge was too far from the nanotubes to transfer electrons, so it retained its standard luminescence.

The research leads to some interesting possibilities for materials science, Saha said. "MCM itself has many applications (as a mesoporous sieve in fuel refineries, for instance), and carbon nanotubes are wonderful materials that many people are interested in. We're just combining these two into a hybrid material that might have the virtues of both."

While pore sizes in zeolites are locked by their crystalline structure at 0.7 nanometers, pores in MCM can be customized, as Saha has done, to absorb specific materials. "There are many things we can do to tune the system that we haven't explored," he said; combining metal molecules or even quantum dots with MCM and nanotubes might lead to interesting results.

Martí said putting charged nanotubes on the surface of a solid also opens the door to use them as catalysts in solar-energy conversion. "You need that driving force, that charge separation, for artificial photosynthesis," he said.

Co-authors of the paper are Rice graduate students Saunab Ghosh and Natnael Behabtu.

The Welch Foundation supported the research.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Imaging

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Richards-Kortum elected to American Academy of Arts and Sciences: April 22nd, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Discoveries

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Announcements

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Fuel Cells

Expanding the reach of metallic glass April 22nd, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Research could usher in next generation of batteries, fuel cells University of South Carolina and Clemson reseachers uncover clean interfaces April 10th, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project