Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Controlling chemistry improves potential of carbon nanotubes

Left: The Billups-Birch alkylcarboxylation reaction allows functional groups to propagate down the CNT from points of pre-existing defects. Right: Electron microscopy shows “banded” CNTs with distinct functionalized and intact regions along their lengths. Photo credits: Nature Communications.
Left: The Billups-Birch alkylcarboxylation reaction allows functional groups to propagate down the CNT from points of pre-existing defects. Right: Electron microscopy shows “banded” CNTs with distinct functionalized and intact regions along their lengths. Photo credits: Nature Communications.

Abstract:
A team of University of Maryland nanotechnology researchers has solved one of the most vexing challenges hindering the use of carbon nanomaterials in increasing electrical energy storage efficiency in batteries or enhancing the fluorescence sensing capabilities of biosensors. The findings are published in the July 12 issue of Nature Communications.

Controlling chemistry improves potential of carbon nanotubes

College Park, MD | Posted on July 12th, 2011

The breakthrough research was led by Chemistry Assistant Professor YuHuang Wang and conducted in the Nanostructures for Electrical Energy Storage center (an Energy Frontier Research Center of the Department of Energy), Northwestern University, and the Maryland NanoCenter.

Carbon nanotubes (CNTs) have enormous potential. They are some of the most conductive structures ever made—highly efficient electrodes with enormous surface area. To take full advantage of these properties, however, CNTs must be soluble—that is, have the ability to be dispersed in a liquid environment or to evenly coat a solid composite material. Unfortunately, in their raw state CNTs are insoluble; they clump together rather than disperse.

For more than a decade, researchers have been developing new chemical processes to address this challenge. One idea has been to create permanent defects on the surfaces of CNTs and "functionalize" them so they are soluble. Unfortunately, this also has the undesired side effect of quickly destroying the CNTs' electrical and optical properties.

Wang and his team have developed a new functionalization process for CNTs that delivers solubility and preserves electrical and optical properties. They purposefully functionalize defects on the tubes in useful—not random—places, creating strategic "functional groups." These carefully placed molecular groups allow CNTs to readily disperse while retaining their optical properties and ability to conduct electric current in large regions along the tube.

The challenge has been to control the chemical reactions that produce the functional groups on the CNTs. By using a chemical process called Billups-Birch reductive alkylcarboxylation, Wang's team found they could progressively add new functional groups to the CNT wall in a controlled way without introducing unintended new defects.

When the CNTs are immersed in a chemical solution for a specific length of time, the functionalized groups on the nanotubes lengthen by a predictable amount. Each time the process is repeated, or as the time in the solution increases, the sections grow longer. When the CNTs are viewed under a special, high magnification electron microscope, it is evident that the functionalization has progressed lengthwise along the tube.

The propagation can initiate from either naturally occurring or intentionally introduced defects. Because the propagation mechanism confines the reaction and strategically controls where the functional groups grow, Wang's team can produce clustered functional groups at a controlled, constant propagation rate. It is the first clearly established wet chemistry process that does so.

The breakthrough makes it possible to create new functional structures such as "banded" nanotubes with alternating segments of functionalized and intact regions. The functionalized regions keep the CNTs from clumping, making them among the most water-soluble CNTs known. At the same time, the bands of intact, non-functionalized regions of the CNTs allow electrical and optical properties to be retained.

"This is important for the future use of these materials in batteries and solar cells where efficient charge collection and transport are sought," Wang explains. "These CNTs also could be used as highly sensitive biochemical sensors because of their sharp optical absorption and long-lived fluorescence in the near infrared regions where tissues are nearly optically transparent."

"This is a major step towards building the controlled nanostructures needed to understand electrochemical science and its value for energy solutions," says University of Maryland NanoCenter Director, Professor Gary Rubloff (MSE/ISR), a collaborator on the project.

The research team also includes theoretical chemist Professor George Schatz of Northwestern University, postdoctoral associates and graduate students Shunliu Deng, Yin Zhang, and Alexandra Brozena, who are equal contribution first authors, as well as Maricris Mayes, Parag Banerjee and Maryland NanoCenter staff member Wen-An Chiou.

####

For more information, please click here

Contacts:
Maryland NanoCenter
Kim Engineering Building
University of Maryland
College Park, MD 20742

Request Info

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Imaging

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Discoveries

ANU invention to inspire new night-vision specs December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Announcements

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

A Phone That Charges in Seconds? UCF Scientists Bring it Closer to Reality November 21st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Vesper a Finalist for Two ACE Awards: Ultimate Products and Innovator of the Year -- Industry’s first piezoelectric MEMS microphone and Vesper CTO Bobby Littrell recognized for prestigious electronics-industry awards November 10th, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project