Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Controlling chemistry improves potential of carbon nanotubes

Left: The Billups-Birch alkylcarboxylation reaction allows functional groups to propagate down the CNT from points of pre-existing defects. Right: Electron microscopy shows “banded” CNTs with distinct functionalized and intact regions along their lengths. Photo credits: Nature Communications.
Left: The Billups-Birch alkylcarboxylation reaction allows functional groups to propagate down the CNT from points of pre-existing defects. Right: Electron microscopy shows “banded” CNTs with distinct functionalized and intact regions along their lengths. Photo credits: Nature Communications.

Abstract:
A team of University of Maryland nanotechnology researchers has solved one of the most vexing challenges hindering the use of carbon nanomaterials in increasing electrical energy storage efficiency in batteries or enhancing the fluorescence sensing capabilities of biosensors. The findings are published in the July 12 issue of Nature Communications.

Controlling chemistry improves potential of carbon nanotubes

College Park, MD | Posted on July 12th, 2011

The breakthrough research was led by Chemistry Assistant Professor YuHuang Wang and conducted in the Nanostructures for Electrical Energy Storage center (an Energy Frontier Research Center of the Department of Energy), Northwestern University, and the Maryland NanoCenter.

Carbon nanotubes (CNTs) have enormous potential. They are some of the most conductive structures ever made—highly efficient electrodes with enormous surface area. To take full advantage of these properties, however, CNTs must be soluble—that is, have the ability to be dispersed in a liquid environment or to evenly coat a solid composite material. Unfortunately, in their raw state CNTs are insoluble; they clump together rather than disperse.

For more than a decade, researchers have been developing new chemical processes to address this challenge. One idea has been to create permanent defects on the surfaces of CNTs and "functionalize" them so they are soluble. Unfortunately, this also has the undesired side effect of quickly destroying the CNTs' electrical and optical properties.

Wang and his team have developed a new functionalization process for CNTs that delivers solubility and preserves electrical and optical properties. They purposefully functionalize defects on the tubes in useful—not random—places, creating strategic "functional groups." These carefully placed molecular groups allow CNTs to readily disperse while retaining their optical properties and ability to conduct electric current in large regions along the tube.

The challenge has been to control the chemical reactions that produce the functional groups on the CNTs. By using a chemical process called Billups-Birch reductive alkylcarboxylation, Wang's team found they could progressively add new functional groups to the CNT wall in a controlled way without introducing unintended new defects.

When the CNTs are immersed in a chemical solution for a specific length of time, the functionalized groups on the nanotubes lengthen by a predictable amount. Each time the process is repeated, or as the time in the solution increases, the sections grow longer. When the CNTs are viewed under a special, high magnification electron microscope, it is evident that the functionalization has progressed lengthwise along the tube.

The propagation can initiate from either naturally occurring or intentionally introduced defects. Because the propagation mechanism confines the reaction and strategically controls where the functional groups grow, Wang's team can produce clustered functional groups at a controlled, constant propagation rate. It is the first clearly established wet chemistry process that does so.

The breakthrough makes it possible to create new functional structures such as "banded" nanotubes with alternating segments of functionalized and intact regions. The functionalized regions keep the CNTs from clumping, making them among the most water-soluble CNTs known. At the same time, the bands of intact, non-functionalized regions of the CNTs allow electrical and optical properties to be retained.

"This is important for the future use of these materials in batteries and solar cells where efficient charge collection and transport are sought," Wang explains. "These CNTs also could be used as highly sensitive biochemical sensors because of their sharp optical absorption and long-lived fluorescence in the near infrared regions where tissues are nearly optically transparent."

"This is a major step towards building the controlled nanostructures needed to understand electrochemical science and its value for energy solutions," says University of Maryland NanoCenter Director, Professor Gary Rubloff (MSE/ISR), a collaborator on the project.

The research team also includes theoretical chemist Professor George Schatz of Northwestern University, postdoctoral associates and graduate students Shunliu Deng, Yin Zhang, and Alexandra Brozena, who are equal contribution first authors, as well as Maricris Mayes, Parag Banerjee and Maryland NanoCenter staff member Wen-An Chiou.

####

For more information, please click here

Contacts:
Maryland NanoCenter
Kim Engineering Building
University of Maryland
College Park, MD 20742

Request Info

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Imaging

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Nanotubes/Buckyballs/Fullerenes

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Sensors

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Nano-policing pollution May 13th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Energy

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

FEI and Weatherford Enter Into Joint Agreement for Advanced Reservoir Characterization Services May 18th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Evident Thermoelectrics Acquires GMZ Energy: Investment Accelerates Launch Of Evident's Thermoelectric Modules For Waste Heat May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project