Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Controlling chemistry improves potential of carbon nanotubes

Left: The Billups-Birch alkylcarboxylation reaction allows functional groups to propagate down the CNT from points of pre-existing defects. Right: Electron microscopy shows “banded” CNTs with distinct functionalized and intact regions along their lengths. Photo credits: Nature Communications.
Left: The Billups-Birch alkylcarboxylation reaction allows functional groups to propagate down the CNT from points of pre-existing defects. Right: Electron microscopy shows “banded” CNTs with distinct functionalized and intact regions along their lengths. Photo credits: Nature Communications.

Abstract:
A team of University of Maryland nanotechnology researchers has solved one of the most vexing challenges hindering the use of carbon nanomaterials in increasing electrical energy storage efficiency in batteries or enhancing the fluorescence sensing capabilities of biosensors. The findings are published in the July 12 issue of Nature Communications.

Controlling chemistry improves potential of carbon nanotubes

College Park, MD | Posted on July 12th, 2011

The breakthrough research was led by Chemistry Assistant Professor YuHuang Wang and conducted in the Nanostructures for Electrical Energy Storage center (an Energy Frontier Research Center of the Department of Energy), Northwestern University, and the Maryland NanoCenter.

Carbon nanotubes (CNTs) have enormous potential. They are some of the most conductive structures ever made—highly efficient electrodes with enormous surface area. To take full advantage of these properties, however, CNTs must be soluble—that is, have the ability to be dispersed in a liquid environment or to evenly coat a solid composite material. Unfortunately, in their raw state CNTs are insoluble; they clump together rather than disperse.

For more than a decade, researchers have been developing new chemical processes to address this challenge. One idea has been to create permanent defects on the surfaces of CNTs and "functionalize" them so they are soluble. Unfortunately, this also has the undesired side effect of quickly destroying the CNTs' electrical and optical properties.

Wang and his team have developed a new functionalization process for CNTs that delivers solubility and preserves electrical and optical properties. They purposefully functionalize defects on the tubes in useful—not random—places, creating strategic "functional groups." These carefully placed molecular groups allow CNTs to readily disperse while retaining their optical properties and ability to conduct electric current in large regions along the tube.

The challenge has been to control the chemical reactions that produce the functional groups on the CNTs. By using a chemical process called Billups-Birch reductive alkylcarboxylation, Wang's team found they could progressively add new functional groups to the CNT wall in a controlled way without introducing unintended new defects.

When the CNTs are immersed in a chemical solution for a specific length of time, the functionalized groups on the nanotubes lengthen by a predictable amount. Each time the process is repeated, or as the time in the solution increases, the sections grow longer. When the CNTs are viewed under a special, high magnification electron microscope, it is evident that the functionalization has progressed lengthwise along the tube.

The propagation can initiate from either naturally occurring or intentionally introduced defects. Because the propagation mechanism confines the reaction and strategically controls where the functional groups grow, Wang's team can produce clustered functional groups at a controlled, constant propagation rate. It is the first clearly established wet chemistry process that does so.

The breakthrough makes it possible to create new functional structures such as "banded" nanotubes with alternating segments of functionalized and intact regions. The functionalized regions keep the CNTs from clumping, making them among the most water-soluble CNTs known. At the same time, the bands of intact, non-functionalized regions of the CNTs allow electrical and optical properties to be retained.

"This is important for the future use of these materials in batteries and solar cells where efficient charge collection and transport are sought," Wang explains. "These CNTs also could be used as highly sensitive biochemical sensors because of their sharp optical absorption and long-lived fluorescence in the near infrared regions where tissues are nearly optically transparent."

"This is a major step towards building the controlled nanostructures needed to understand electrochemical science and its value for energy solutions," says University of Maryland NanoCenter Director, Professor Gary Rubloff (MSE/ISR), a collaborator on the project.

The research team also includes theoretical chemist Professor George Schatz of Northwestern University, postdoctoral associates and graduate students Shunliu Deng, Yin Zhang, and Alexandra Brozena, who are equal contribution first authors, as well as Maricris Mayes, Parag Banerjee and Maryland NanoCenter staff member Wen-An Chiou.

####

For more information, please click here

Contacts:
Maryland NanoCenter
Kim Engineering Building
University of Maryland
College Park, MD 20742

Request Info

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Imaging

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Nanotubes/Buckyballs/Fullerenes

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Sensors

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Energy

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

One step closer to reality: Devices that convert heat into electricity: Composite material yields 10 times -- or higher -- voltage output January 4th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Research partnerships

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project