Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Picosun and Carleton University Introduce the First Gold Films by Plasma-Enhanced ALD

Abstract:
Picosun Oy, Finland-based global manufacturer of state-of-the-art Atomic Layer Deposition (ALD) equipment, reports successful process for preparation of gold thin films with plasma-enhanced ALD (PEALD) method first time in the world. Gold films were grown in Picosun's SUNALE˙ ALD reactor equipped with the same company‚s Picoplasma˙ plasma source system on top of ruthenium underlayers, as illustrated in the photograph below, from precursor chemicals developed and synthesized by Prof. Sean Barry and Ph.D. student Jason Coyle from Carleton University, Ottawa, Canada.

Picosun and Carleton University Introduce the First Gold Films by Plasma-Enhanced ALD

Espoo, Finland | Posted on July 11th, 2011

Picosun has worked with precursor and process development with Carleton University also before. Copper films of excellent quality and uniformity have been deposited on top of TiN underlayers and on silicon trench wafers, on the bottom of trenches of aspect ratio 1:15. Moreover, high quality silver thin films have been successfully manufactured in a Picosun SUNALE˙ reactor from precursors developed at the University of Helsinki, Finland.

Production of ultra-thin, highly uniform and conformal metal films even on high aspect ratio structures such as Through-Silicon-Vias (TSV) and other 3D nanoscale architectures is becoming crucial in today's electronics manufacturing. As the component sizes keep decreasing but at the same time, the level of system integration increasing, metal deposition by ALD is the only method with which conductive layers and contact points can be manufactured on the nm-scale patterned, 3D-integrated, highly complex modern MEMS/NEMS (Micro/NanoElectroMechanical) devices.

"Coinage metals (Cu, Ag, Au) are poised to play a significant role also in sensing technologies, where they will be crucial in signal enhancement and as anchor surfaces for organic sensing elements. Using plasma to deposit these metals as an ALD process widens drastically the deposition temperature window, permitting the employment of such sensitive substrates as modified fiber optic filaments and plastics. The design of the Picoplasma˙ tool allows for excellent uniformity over a wide deposition area, while minimizing substrate damage from the plasma source", states Prof. Barry from Carleton University.

Picosun's Picoplasma˙, innovative and revolutionary "ion-free" remote plasma source was just recently launched to the market and it has been a huge success right from the start, being already chosen by several key customers on three continents.

####

About Picosun Oy
Picosun Oy is a Finland-based global manufacturer of state-of-the-art ALD systems for micro- and nanotechnology applications, representing continuity to over three decades of dedicated, exclusive ALD reactor design and manufacturing. Picosun is based in Espoo, Finland, its production facilities are located in Kirkkonummi, Finland, and its US headquarters in Detroit, Michigan. Picosun‚s SUNALE˙ ALD process tools are in daily use in various top level universities, research institutes and high profile companies across four continents. Picosun Oy is a part of Stephen Industries Inc. Oy.

For more information, please click here

Contacts:
Juhana Kostamo
Phone: +358 50 321 1955
Fax: +358 20 722 7012
E-mail:

Copyright © Picosun Oy

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Thin films

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Scientists reveal the fundamental limitation in the key material for solid-state lighting January 25th, 2018

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

NEMS

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

MEMS

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Discoveries

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Announcements

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Tools

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project