Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanocrystal Transformers: Berkeley Lab Researchers Observe Structural Transformations in Single Nanocrystals

TEAM 0.5 micrographs showing the low-chalcocite (left) and high-chalcocite atomic structures of a copper sulfide nanorod.
TEAM 0.5 micrographs showing the low-chalcocite (left) and high-chalcocite atomic structures of a copper sulfide nanorod.

Abstract:
While a movie about giant robots that undergo structural transformations is breaking box office records this summer, a scientific study about structural transformations within single nanocrystals is breaking new ground for the design of novel materials that will serve next-generation energy storage batteries and solar energy harvesting devices. Researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have reported the first direct observation of structural transformations within a single nanocrystal of copper sulfide, a semiconductor expected to play an important role in future energy technologies.

Nanocrystal Transformers: Berkeley Lab Researchers Observe Structural Transformations in Single Nanocrystals

Berkeley, CA | Posted on July 9th, 2011

Using TEAM 0.5, one of the world's most powerful transmission electron microscopes, a research group led by Berkeley Lab director Paul Alivisatos, observed structural fluctuations in a copper sulfide nanocrystal as it transitioned between the low- and high-chalcocite solid-state phases. These fluctuations are highly relevant to understanding such phenomena as how ion transport occurs within electrodes during the charging and discharging of batteries, or how the structures of a solid material might change at the interface between an electrode and an electrolyte.

"TEAM 0.5, with its advanced electron optics and recording systems, enables rapid sample imaging with single atom sensitivity across the periodic table and greater collection efficiency. This provides extraordinary opportunities to study structural transformation dynamics in situ with atomic resolution," Alivisatos says.

"In this study," he adds, "we observed structural transformation dynamics in a copper sulfide nanorod from a low- to a high-chalcocite structure with unprecedented detail, and found these dynamics to be strongly influenced by defects in the nanorod crystal. Our findings suggest strategies for suppressing or assisting such transformations that should aid in the future design of materials with new and controlled phases."

The popular concept of phase transitions is that of a material, in response to temperature changes, undergoing a transformation from a solid to a liquid or gas, i.e., ice to water to steam. But some solid materials, especially at the nanoscale, when subjected to temperature changes can transition between two more different phases in their crystal structure. Copper sulfide, for example, can be transformed from a complex hexagonal structure known as the low-chalcocite phase, to a more simple hexagonal structure known as the high-chalcocite phase. Because such "first-order structural transformations" can alter the properties of a nanocrystal, they are of great interest to a broad range of scientific fields and hold important implications for numerous technologies.

"In nanoscale systems, the energetic barrier to a structural transformation scales with crystal size," says Alivisatos. "When the size of a nanocrystal is in a regime where thermal energy is comparable to the energy barrier for phase transformation, fluctuations between two stable structures occur at the transition point, and are relevant to many molecular and solid-state phenomena near equilibrium."

Alivisatos, the Larry and Diane Bock Professor of Nanotechnology at the University of California (UC) Berkeley, is a corresponding author of a paper in the journal Science titled "Observation of Transient Structural-Transformation Dynamics in a Cu2S Nanorod." Co-authoring this paper were Haimei Zheng, Jessy Rivest, Timothy Miller, Bryce Sadtler, Aaron Lindenberg, Michael Toney, Lin-Wang Wang and Christian Kisielowski.

"During the phase transitions of copper sulfide between low-chalcocite and high-chalcocite structure, the sulfur ions remain in a rigid lattice frame while the copper ions move within the sulfur ion lattice," says Haimei Zheng, lead and co-corresponding author of the Science paper.

"We observed where the phase nucleates at the surface of the nanorod and within the core and how the phase transformation propagates," Zheng says. "We also observed the effects of defects. For example, we observed that a stacking fault creates a barrier for the movement of copper ions and thereby blocks the phase propagation. Such observations provide us with important new insights on the atomic pathways of first order structural transformations."

According to phase transition theory, a solid crystal will fluctuate between two equilibrium structures near the phase transition point before reaching a stable configuration, and that this region of transition broadens in small crystals. To test this theory, Zheng, Alivisatos and their co-authors zapped copper sulphide nanorods with an electron beam from the TEAM 0.5 microscope then watched for and saw the predicted fluctuations.

"Before the TEAM microscopes, such details of the fluctuations between two solid-state phases in a nanocrystal could not have been observed," says Zheng. "Our results should be of interest to theorists attempting to simulate structural transformations in solids as neither a study on bulk materials nor on the ensemble of nanomaterials has the capability of revealing such specific features of the phase transition pathways."

TEAM stands for Transmission Electron Aberration-corrected Microscope. TEAM 0.5 and its sister instrument TEAM 1.0 are capable of producing images with half‑angstrom resolution - less than the diameter of a single hydrogen atom. Both microscopes are housed at Berkley Lab in DOE's National Center for Electron Microscopy (NCEM).

The next step for her, Zheng says, will be to address questions concerning the transport of ions with battery material changes at the electrode/electrolyte interface, and structural changes of nanoparticle catalysts.

"Such studies share the same aim of developing microscopic understanding of the structural transformations of materials, especially those that are important for energy applications," Zheng says. "In situ transmission electron microscopy, especially our recent technical advances in dynamic imaging through liquids or gases, as well as at the applied electric biasing, provides a powerful tool for such studies."

This research was supported by the DOE Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information about the research of Paul Alivisatos, visit the Website at:

For more information on the National Center for Electron Microscopy visit the Website at:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project