Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIST Prototype 'Optics Table on a Chip' Places Microwave Photon in Two Colors at Once

NIST's "optics table on a chip" is a superconducting circuit on a square sapphire chip about 6 millimeters wide. Scientists use the chip to place a single microwave photon in two frequencies, or colors, at the same time. The photon is prepared by an "artificial atom" (small yellow square) in the middle of the chip. The arrow shape at the lower left connects to a transmission line used to tune the SQUID (small black area near the point of the arrow). The SQUID couples together two resonant frequencies of the cavity (meandering line), and the photon oscillates between different superpositions of those frequencies.
Credit: D. Schmidt/NIST
NIST's "optics table on a chip" is a superconducting circuit on a square sapphire chip about 6 millimeters wide. Scientists use the chip to place a single microwave photon in two frequencies, or colors, at the same time. The photon is prepared by an "artificial atom" (small yellow square) in the middle of the chip. The arrow shape at the lower left connects to a transmission line used to tune the SQUID (small black area near the point of the arrow). The SQUID couples together two resonant frequencies of the cavity (meandering line), and the photon oscillates between different superpositions of those frequencies.

Credit: D. Schmidt/NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have created a tunable superconducting circuit on a chip that can place a single microwave photon (particle of light) in two frequencies, or colors, at the same time.

NIST Prototype 'Optics Table on a Chip' Places Microwave Photon in Two Colors at Once

Gaithersburg, MD | Posted on July 7th, 2011

This curious "superposition," a hallmark of the quantum world, is a chip-scale, microwave version of a common optics experiment in which a device called a beam-splitter sends a photon into either of two possible paths across a table of lasers, lenses and mirrors. The new NIST circuit can be used to create and manipulate different quantum states, and is thus a prototype of the scientific community's long-sought "optics table on a chip."

Described in Nature Physics,* the NIST experiments also created the first microwave-based bit for linear optical quantum computing. This type of quantum computer is typically envisioned as storing information in either the path of a light beam or the polarization (orientation) of single photons. In contrast, a microwave version would store information in a photon's frequency. Quantum computers, if they can be built, could solve certain problems that are intractable today.

The new NIST circuit combines components used in superconducting quantum computing experiments—a single photon source, a cavity that naturally resonates or vibrates at particular frequencies, and a coupling device called a SQUID (superconducting quantum interference device). Scientists tuned the SQUID properties to couple together two resonant frequencies of the cavity and then manipulated a photon to make it oscillate between different superpositions of the two frequencies. For instance, the photon could switch back and forth from equal 50/50 proportions of both frequencies to an uneven 75/25 split. This experimental setup traps photons in a "box" (the cavity) instead of sending them flying across an optical table.

"This is a new way to manipulate microwave quantum states trapped in a box," says NIST physicist José Aumentado, a co-author of the new paper. "The reason this is exciting is it's already technically feasible to produce interesting quantum states in chip-scale devices such as superconducting resonators, and now we can manipulate these states just as in traditional optics setups."

NIST researchers can control how the new circuit couples different quantum states of the resonator over time. As a result, they can create sequences of interactions to make simple optical circuits and reproduce traditional optics experiments. For example, they can make a measurement tool called an interferometer based on the frequency/color of a single photon, or produce special quantum states of light such as "squeezed" light.

* E. Zakka-Bajjani, F. Nguyen, M. Lee, L.R. Vale, R.W. Simmonds and J. Aumentado. Quantum superposition of a single microwave photon in two different 'colour' states. Nature Physics. Posted online July 3, 2011.

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

Physics

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Computers made of genetic material? HZDR researchers conduct electricity using DNA-based nanowires November 9th, 2016

Spin liquid on a peak: Modelling of a magnetic material unveils an unusual state of matter that promises to advance the field of condensed matter November 9th, 2016

Lab-on-a-chip

Researchers use acoustic waves to move fluids at the nanoscale November 15th, 2016

Laboratories

Working under pressure: Diamond micro-anvils with huge pressures will create new materials October 19th, 2016

Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge October 15th, 2016

Scientists Find Static "Stripes" of Electrical Charge in Copper-Oxide Superconductor: Fixed arrangement of charges coexists with material's ability to conduct electricity without resistance October 14th, 2016

Tomoyasu Mani Wins 2016 Blavatnik Regional Award for Young Scientists: Award recognizes his work at Brookhaven Lab to understand the physical processes occurring in organic materials used to harness solar energy October 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Discoveries

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Quantum nanoscience

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing November 7th, 2016

New technique for creating NV-doped nanodiamonds may be boost for quantum computing November 5th, 2016

Unusual quantum liquid on crystal surface could inspire future electronics October 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project