Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Prototype 'Optics Table on a Chip' Places Microwave Photon in Two Colors at Once

NIST's "optics table on a chip" is a superconducting circuit on a square sapphire chip about 6 millimeters wide. Scientists use the chip to place a single microwave photon in two frequencies, or colors, at the same time. The photon is prepared by an "artificial atom" (small yellow square) in the middle of the chip. The arrow shape at the lower left connects to a transmission line used to tune the SQUID (small black area near the point of the arrow). The SQUID couples together two resonant frequencies of the cavity (meandering line), and the photon oscillates between different superpositions of those frequencies.
Credit: D. Schmidt/NIST
NIST's "optics table on a chip" is a superconducting circuit on a square sapphire chip about 6 millimeters wide. Scientists use the chip to place a single microwave photon in two frequencies, or colors, at the same time. The photon is prepared by an "artificial atom" (small yellow square) in the middle of the chip. The arrow shape at the lower left connects to a transmission line used to tune the SQUID (small black area near the point of the arrow). The SQUID couples together two resonant frequencies of the cavity (meandering line), and the photon oscillates between different superpositions of those frequencies.

Credit: D. Schmidt/NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have created a tunable superconducting circuit on a chip that can place a single microwave photon (particle of light) in two frequencies, or colors, at the same time.

NIST Prototype 'Optics Table on a Chip' Places Microwave Photon in Two Colors at Once

Gaithersburg, MD | Posted on July 7th, 2011

This curious "superposition," a hallmark of the quantum world, is a chip-scale, microwave version of a common optics experiment in which a device called a beam-splitter sends a photon into either of two possible paths across a table of lasers, lenses and mirrors. The new NIST circuit can be used to create and manipulate different quantum states, and is thus a prototype of the scientific community's long-sought "optics table on a chip."

Described in Nature Physics,* the NIST experiments also created the first microwave-based bit for linear optical quantum computing. This type of quantum computer is typically envisioned as storing information in either the path of a light beam or the polarization (orientation) of single photons. In contrast, a microwave version would store information in a photon's frequency. Quantum computers, if they can be built, could solve certain problems that are intractable today.

The new NIST circuit combines components used in superconducting quantum computing experiments—a single photon source, a cavity that naturally resonates or vibrates at particular frequencies, and a coupling device called a SQUID (superconducting quantum interference device). Scientists tuned the SQUID properties to couple together two resonant frequencies of the cavity and then manipulated a photon to make it oscillate between different superpositions of the two frequencies. For instance, the photon could switch back and forth from equal 50/50 proportions of both frequencies to an uneven 75/25 split. This experimental setup traps photons in a "box" (the cavity) instead of sending them flying across an optical table.

"This is a new way to manipulate microwave quantum states trapped in a box," says NIST physicist José Aumentado, a co-author of the new paper. "The reason this is exciting is it's already technically feasible to produce interesting quantum states in chip-scale devices such as superconducting resonators, and now we can manipulate these states just as in traditional optics setups."

NIST researchers can control how the new circuit couples different quantum states of the resonator over time. As a result, they can create sequences of interactions to make simple optical circuits and reproduce traditional optics experiments. For example, they can make a measurement tool called an interferometer based on the frequency/color of a single photon, or produce special quantum states of light such as "squeezed" light.

* E. Zakka-Bajjani, F. Nguyen, M. Lee, L.R. Vale, R.W. Simmonds and J. Aumentado. Quantum superposition of a single microwave photon in two different 'colour' states. Nature Physics. Posted online July 3, 2011.

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

TCL Unveils First 65” TV Featuring QD Vision’s Color IQ™ Quantum Dot Technology: Emerging industry leader introduces expanded quantum dot TV lineup May 30th, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Physics

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

How spacetime is built by quantum entanglement: New insight into unification of general relativity and quantum mechanics May 28th, 2015

Squeezed quantum cats May 28th, 2015

Laboratories

Linking superconductivity and structure May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Lab-on-a-chip

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Announcements

TCL Unveils First 65” TV Featuring QD Vision’s Color IQ™ Quantum Dot Technology: Emerging industry leader introduces expanded quantum dot TV lineup May 30th, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Quantum nanoscience

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project