Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Laser, electric fields combined for new 'lab-on-chip' technologies

This graphic illustrates a new technology that combines a laser and electric fields to manipulate fluids and tiny particles such as bacteria, viruses and DNA for a range of potential applications from drug manufacturing to food safety. The technologies could bring innovative sensors and analytical devices for "lab-on-a-chip" applications. (Stuart J. Williams, University of Louisville)
This graphic illustrates a new technology that combines a laser and electric fields to manipulate fluids and tiny particles such as bacteria, viruses and DNA for a range of potential applications from drug manufacturing to food safety. The technologies could bring innovative sensors and analytical devices for "lab-on-a-chip" applications.
(Stuart J. Williams, University of Louisville)

Abstract:
ABSTRACT

Hybrid opto-electric manipulation in microfluidics—opportunities and Challenges

Aloke Kumar *a, Stuart J. Williams b, Han-Sheng Chuang c, Nicolas G. Green d, and Steven T. Wereley e

aBiosciences Division, Oak Ridge National Laboratory, E-mail: Fax: +1 865-574-5345; Tel: +1 865-574-8661

bDepartment of Mechanical Engineering, University of Louisville, E-mail: Tel: +1 502-852-6340

cMechanical Engineering and Applied Mechanics, University of Pennsylvania, E-mail: Tel: +1 215-746-2993

dSchool of Electronics and Computer Science, University of Southampton, E-mail: Tel: +44 (0)2380593778

eBirck Nanotechnology Center, Purdue University, E-mail: Fax: +1 765-496-6443; Tel: +1 765-494-5624

Hybrid opto-electric manipulation in microfluidics/nanofluidics refers to a set of methodologies employing optical modulation of electrokinetic schemes to achieve particle or fluid manipulation at the micro- and nano-scale. Over the last decade, a set of methodologies, which differ in their modulation strategy and/or the length scale of operation, have emerged. These techniques offer new opportunities with their dynamic nature, and their ability for parallel operation has created novel applications and devices. Hybrid opto-electric techniques have been utilized to manipulate objects ranging in diversity from millimetre-sized droplets to nano-particles. This review article discusses the underlying principles, applications and future perspectives of various hybrid opto-electric techniques that have emerged over the last decade under a unified umbrella.

Laser, electric fields combined for new 'lab-on-chip' technologies

West Lafayette, IN | Posted on July 5th, 2011

Researchers are developing new technologies that combine a laser and electric fields to manipulate fluids and tiny particles such as bacteria, viruses and DNA for a range of potential applications, from drug manufacturing to food safety.

The technologies could bring innovative sensors and analytical devices for "lab-on-a-chip" applications, or miniature instruments that perform measurements normally requiring large laboratory equipment, said Steven T. Wereley, a Purdue University professor of mechanical engineering.

The method, called "hybrid optoelectric manipulation in microfluidics," is a potential new tool for applications including medical diagnostics, testing food and water, crime-scene forensics, and pharmaceutical manufacturing.

"This is a cutting-edge technology that has developed over the last decade from research at a handful of universities," said Aloke Kumar, a Wigner Fellow and staff member at Oak Ridge National Laboratory.

He is lead author of an article about the technology featured on the cover of the July 7 issue of Lab on a Chip magazine, published by the Royal Society of Chemistry. The article also has been flagged by the publication as a "HOT Article" and has been made free to access at http://blogs.rsc.org/lc/2011/06/15/issue-13-now-online/

The article is written by Wereley; Kumar; Stuart J. Williams, an assistant professor of mechanical engineering at the University of Louisville; Han-Sheng Chuang, an assistant professor in the Department of Biomedical Engineering at National Cheng Kung University; and Nicolas G. Green, a researcher at the University of Southampton.

"A very important aspect is that we have achieved an integration of technologies that enables manipulation across a very wide length scale spectrum," Kumar said. "This enables us to manipulate not only big-sized objects like droplets but also tiny DNA molecules inside droplets by using one combined technique. This can greatly enhance efficiency of lab-on-a-chip sensors."

Kumar, Williams and Chuang are past Purdue doctoral students who worked with Wereley. Much of the research has been based at the Birck Nanotechnology Center at Purdue's Discovery Park.

The technologies are ready for some applications, including medical diagnostics and environmental samples, Williams said.

"There are two main thrusts in applications," he said. "The first is micro- and nanomanufacturing and the second is lab-on-a-chip sensors. The latter has demonstrated biologically relevant applications in the past couple of years, and its expansion in this field is immediate and ongoing."

The technology works by first using a red laser to position a droplet on a platform specially fabricated at Purdue. Next, a highly focused infrared laser is used to heat the droplets, and then electric fields cause the heated liquid to circulate in a "microfluidic vortex." This vortex is used to isolate specific types of particles in the circulating liquid, like a micro centrifuge. Particle concentrations replicate the size, location and shape of the infrared laser pattern.

"This works very fast," Wereley said. "It takes less than a second for particles to respond and get pulled out of solution."

Systems using the hybrid optoelectric approach can be designed to precisely detect, manipulate and screen certain types of bacteria, including particular strains that render heavy metals less toxic.

"We are shooting for biological applications, such as groundwater remediation," Wereley said. "Even within the same strain of bacteria some are good at the task and some are not, and this technology makes it possible to efficiently cull those bacteria from others. The bacteria could be injected into the contaminated ground. You seed the ground with the bacteria, but first you need to find an economical way to separate it."

Purdue researchers also are pursuing the technology for pharmaceutical manufacturing, he said.

"These types of technology are good at being very dynamic, which means you can decide in real time to grab all particles of one size or one type and put them somewhere," Wereley said. "This is important for the field of pharmacy because a number of drugs are manufactured from solid particles suspended in liquid. The particles have to be collected and separated from the liquid."

This process is now done using filters and centrifuges.

"A centrifuge does the same sort of thing but it's global, it creates a force on every particle, whereas this new technology can specifically isolate only certain particles," Wereley said. "We can, say, collect all the particles that are one micron in diameter or get rid of anything bigger than two microns, so you can dynamically select which particles you want to keep."

The technology also may be used as a tool for nanomanufacturing because it shows promise for the assembly of suspended particles, called colloids. The ability to construct objects with colloids makes it possible to create structures with particular mechanical and thermal characteristics to manufacture electronic devices and tiny mechanical parts. The nanomanufacturing applications are at least five years away, he said.

The technology also can be used to learn fundamental electrokinetic forces of molecules and biological structures, which is difficult to do with existing technologies.

"Thus there are very fundamental science applications of these technologies as well," Kumar said.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Steven T. Wereley
765-494-5624


Aloke Kumar
865-574-8661


Stuart J Williams
502-852-6340


Han-Sheng Chuang
215-746-2993

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Lab on a Chip on Twitter

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Lab-on-a-chip

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

Nanomedicine

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Sensors

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Discoveries

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Food/Agriculture/Supplements

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project