Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The forces of attraction: How cells change direction

Abstract:
Many cell types in higher organisms are capable of implementing directed motion in response to the presence of certain chemical attractants in their vicinity. A team led by Dr. Doris Heinrich of the Faculty of Physics and the Center for NanoScience (CeNS) at Ludwig-Maximilians-Universität (LMU) München has developed a novel technique to expose an ensemble of living cells to rapidly varying concentrations of chemoattractants.

The forces of attraction: How cells change direction

Germany | Posted on July 5th, 2011

"Using this novel experimental approach, we investigate with high temporal and spatial resolution how living cells react to rapid changes in concentration gradients of chemoattractants. This gives us a new means of studying how such changes are detected and transduced by the cell's signaling pathways," says Heinrich.

The work is also of clinical significance, since directed migration of cells is essential for embryonic development and for immune responses. The researchers have even used their system to build a chemotactic trap that allows them to immobilize cells by exposing them to rapidly changing patterns of chemoattractants. The term "chemotaxis" refers to the ability of many cell types in higher organisms to detect and respond to concentration gradients of specific compounds by migrating toward or away from the source of the gradient.

"We investigate how cells follow concentration gradients of a chemoattractant and change their migration direction after a change in the external stimulus. We have developed a so-called microfluidic gradient generator, which allows us to rapidly alter the direction of the gradient such that the cells are repeatedly stimulated to reverse their direction of migration," says Börn Meier, who is the first author on the new study.

Each cell migrates along a gradient by crawling in the direction of the source of a chemoattractant. This cell locomotion is in turn based on the ongoing reorganization of the cytoskeleton, a network of fibers made up of the protein actin within the living cell. In response to the presence of a chemoattractant, actin filaments are assembled at the front of the cell, causing the membrane to extend protrusions called pseudopodia in the direction of migration.

Previous studies have shown that this reorganization is controlled by the localized accumulation of signal molecules in response to the binding of the chemoattractant to specific receptors on the cell surface. "It is however very difficult to detect the underlying changes in the spatial and temporal distributions of the biochemical agents involved. In order to achieve this, very precise control over the shape and the direction of the chemoattractant gradient must be obtained," says Heinrich.

The new gradient generator provides this control, and promises to facilitate deeper insight into the signal pathways that control chemotaxis. In the new study, the investigators describe two different ways in which cells can reorient in response to changes in the gradient. Depending on the conditions, cells can either execute a U-turn, or they can go into reverse by disassembling the actin cytoskeleton at the prior leading edge of the cell, and switching the site of filament formation to the opposite end. Such reorganization of the actin cytoskeleton requires the participation of a large number of proteins.

The research team is especially interested in determining the spatio-temporally changing distributions of these factors during the course of the entire process. The new technique even makes it possible to vary the direction of the gradient field at such a high rate that, although the cell can respond to each switch by activating its internal signaling machinery, it does not have time to reorient the actin network appropriately before the gradient changes again. The net result is that the cell remains in its initial position, immobilized in a chemotactic trap.

In a further experiment cells were exposed to varying gradients of chemoattractant in the presence of drugs that are known to affect the chemotactic signal cascades in the cells. The team was able to show that one particular inhibitor has a drastic effect on the pattern of cell motion. As Heinrich emphasizes, "Our experimental setup will give us new insights into complex intracellular signalling pathways of fundamental relevance for many areas of biological research, including cell and developmental biology, biochemistry and medicine."

# Full bibliographic informationChemotactic cell trapping in controlled alternating gradient fields. B. Meier, A. Zielinski, C. Weber, D. Arcizet, S. Youssef, T. Franosch, J. O. Rädler, D. Heinrich. PNAS Early Edition 27 June 2011, doi: 10.1073/pnas.1014853108

####

For more information, please click here

Contacts:
Dr. Doris Heinrich
Faculty of Physics
Phone: +49 89 2180 6760
Fax: + 4989 2180 3182


Börn Meier Faculty of Physics
Phone: +49 89 2180 1453
Fax: +49 89 2180 3182

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project