Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Splitsville for Boron Nitride Nanotubes: Berkeley Lab Researchers Find New Way to Mass Produce High Quality Boron Nitride Nanoribbons

Splitting of a boron nitride nanotube to form a boron nitride nanoribbon shows atoms of boron in blue, nitrogen in yellow and potassium in pink. Pressure from potassium intercalation unzips the BNNT and forms layers of BNNRs.
Splitting of a boron nitride nanotube to form a boron nitride nanoribbon shows atoms of boron in blue, nitrogen in yellow and potassium in pink. Pressure from potassium intercalation unzips the BNNT and forms layers of BNNRs.

Abstract:
For Hollywood celebrities, the term "splitsville" usually means "check your prenup." For scientists wanting to mass-produce high quality nanoribbons from boron nitride nanotubes, "splitsville" could mean "happily ever after."

Splitsville for Boron Nitride Nanotubes: Berkeley Lab Researchers Find New Way to Mass Produce High Quality Boron Nitride Nanoribbons

Berkeley, CA | Posted on July 2nd, 2011

Scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, working with scientists at Rice University, have developed a technique in which boron nitride nanotubes are stuffed with atoms of potassium until the tubes split open along a longitudinal seam. This creates defect-free boron nitride nanoribbons of uniform lengths and thickness. Boron nitride nanoribbons are projected to display a variety of intriguing magnetic and electronic properties that hold enormous potential for future devices.

Nanoribbons are two-dimensional single crystals (meaning only a single atom in thickness) that can measure multiple microns in length, but only a few hundred or less nanometers in width. Graphene nanoribbons, which are made from pure carbon, carry electrons at much faster speeds than silicon, and can be used to cover wide areas and a broad assortment of shapes. Boron nitride nanoribbons offer similar advantages plus an additional array of electronic, optical and magnetic properties.

"There has been a significant amount of theoretical work indicating that, depending on the ribbon edges, boron nitride nanoribbons may exhibit ferromagnetism or anti-ferromagnetism, as well as spin-polarized transport which is either metallic or semi-conducting," says physicist Alex Zettl, one of the world's foremost researchers into nanoscale systems and devices who holds joint appointments with Berkeley Lab's Materials Sciences Division (MSD) and the Physics Department at UC Berkeley, where he is the director of the Center of Integrated Nanomechanical Systems (COINS).

"The unique properties of boron nitride nanoribbons are of great fundamental scientific interest and also have implications for applications in technologies that include spintronics and optoelectronics," Zettl says. "However, the facile, scalable synthesis of high quality boron nitride nanoribbons has been a significant challenge."

Zettl and members of his research group met this challenge using the chemical process known as "intercalation," whereby atoms or molecules of one type are inserted between atoms and molecules of another type. James Tour at Rice University and his research group had demonstrated that the intercalation of potassium atoms into carbon nanotubes promotes a longitudinal splitting of the tubes. This prompted Zettl and Tour to collaborate on a study that used the same approach on boron nitride nanotubes, which are very similar in structure to nanotubes made from carbon.

Zettl and Tour reported the results of this study in the journal Nano Letters. The paper was titled "Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons." Co-authoring the paper were Kris Erickson, Ashley Gibb, Michael Rousseas and Nasim Alem, who are all members of Zettl's research group, and Alexander Sinitskii, a member of Tour's research group.

"The likely mechanism for the splitting of both carbon and boron nitride nanotubes is that potassium islands grow from an initial starting point of intercalation," Zettl says. "This island growth continues until enough circumferential strain results in a breakage of the chemical bonds of the intercalated nanotube. The potassium then begins bonding to the bare ribbon edge, inducing further splitting."

This synthesis technique yields boron nitride nanoribbons of uniform widths that can be as narrow as 20 nanometers. The ribbons are also at least one micron in length, with minimal defects within the plane or along the edges. Zettl says the high quality of the edges points to the splitting process being orderly rather than random. This orderliness could explain why a high proportion of the boron nitride nanoribbons display the coveted zigzag or armchair-shaped edges, rather than other edge orientations.

Edges are critical determinants of a nanoribbon's properties because the electrons along the edge of one ribbon edge can interact with the electrons along the edge of another ribbon, resulting in the type of energy gap that is crucial for making devices. For example, zigzagged edges in graphene nanoribbons have been shown to be capable of carrying a magnetic current, which makes them candidates for spintronics, the computing technology based on the spin rather than the charge of electrons.

Kris Erickson, who was the lead author on the Nano Letters paper, says that, "Given the significant dependence upon boron nitride nanoribbon edges for imbuing particular electronic and magnetic properties, the high likelihood of synthesizing ribbons with zigzag and armchair edges makes our technique particularly suitable for addressing theoretical predictions and realizing proposed applications."

Erickson also says it should be possible to functionalize the edges of the boron nitride nanoribbons, as these edges are terminated with chemically reactive potassium atoms following synthesis and with reactive hydrogen atoms following exposure to water or ethanol.

"The potassium-terminated edge could easily be replaced with a species other than hydrogen," Erickson says. "Different chemicals could be used for quenching to impart other terminations, and, furthermore, hydrogen could be replaced after quenching by either utilizing established boron nitride functionalization routes, or by devising new routes unique to the highly reactive nanoribbon edge."

Zettl and his research group are now investigating alternative syntheses using different boron nitride nanotube precursors to increase yields and improve the purification process. They are also attempting to functionalize the edges of their nanoribbons and they are in the process of determining if the various predicted edge states for these nanoribbons can be studied.

"What we really need most right now is a better source of boron nitride nanotubes," Zettl says.

This work was supported by the U.S. Department of Energy's Office of Science, with additional support from the National Science Foundation through the Center of Integrated Nanomechanical Systems (COINS), the Office of Naval Research, and the Air Force Research Laboratory.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To learn more about Alex Zettl and his research group go here:

To learn more about James Tour and his research group visit the Website at :

Related News Press

News and information

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Laboratories

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

News laser design offers more inexpensive multi-color output: Design can control color, intensity of light by varying cavity architecture July 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Graphene/ Graphite

Scientists produce dialysis membrane made from graphene: Material can filter nanometer-sized molecules at 10 to 100 times the rate of commercial membranes June 29th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Thought Leaders and Experts Join National Graphene Association Advisory Board June 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Nanotubes/Buckyballs/Fullerenes/Nanorods

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discoveries

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Announcements

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Military

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project