Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum leaper: Acclaimed for a breakthrough algorithm, physicist Steven White is now first to model a new state of matter

Steve Zylius / University Communications
“Quantum mechanics is just so weird, and when you go deeper into it, it’s even weirder,” admits professor of physics & astronomy Steven White, whose simulation of a quantum spin liquid graces the cover of Science magazine’s June 3 issue.
Steve Zylius / University Communications
“Quantum mechanics is just so weird, and when you go deeper into it, it’s even weirder,” admits professor of physics & astronomy Steven White, whose simulation of a quantum spin liquid graces the cover of Science magazine’s June 3 issue.

Abstract:
When a firefighter visited Steven White's kindergarten class, the 5-year-old didn't want to try on his big helmet. He wanted to know what velocity of water his hose could spray. When a musician visited, the boy wanted to know the frequencies of the sound waves from her instrument.

Quantum leaper: Acclaimed for a breakthrough algorithm, physicist Steven White is now first to model a new state of matter

Irvine, CA | Posted on July 2nd, 2011

The teacher was so concerned she called his parents and advised them to stop putting so much academic pressure on their young son. "It's not us," they replied. "It's all him."

White, now 51 and a globally recognized UC Irvine professor of physics & astronomy, says his physicist uncle may have had something to do with his early scientific inquiries. By second grade, White had decided he wanted to be a physicist too.

Fast-forward almost five decades, and that childhood dream has more than come true. As a young UCI assistant professor in 1992, White published a pioneering computer algorithm that helped crack quantum mechanics conundrums and has since led to a whole new field of computational physics.

This month, his latest breakthrough, successfully modeling a quantum spin liquid, is featured on the cover of Science magazine. Such a liquid is a new state of matter invisible to the naked eye that experts more than 30 years ago hypothesized might exist. It could be a key to understanding superconductivity and building quantum computers. White and graduate student Simeng Yan - in collaboration with a Princeton University physicist - created the first realistic computer model conclusively identifying a quantum spin liquid, depicting it as a wedge of darkness above a floating red and blue lattice of atomic connections.

"It's a testament to Steve's continued groundbreaking work," says department chair Bill Parker. "Being on the cover of Science - the largest, most respected interdisciplinary journal in the world - is a great honor."

"It's great!" agrees White, a cheerful, down-to-earth man who admits his work is hard for even fellow physicists to understand. He tries valiantly to translate it via multicolored computer simulations, guest talks at major universities and patient conversations with nonscientists.

"Quantum mechanics is just so weird, and when you go deeper into it, it's even weirder," he says. Consider the title of the Science paper: "Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet."

White pulls out all the stops in a recent conversation, carefully explaining how he and Yan were able to model the super chilled liquid form of infinitesimally small, or quantum-sized, antimagnetic particles. To illustrate, he uses old black and white movies, a Japanese basket-weaving pattern known as kagome, and pictures of a green veined rock called herbertsmithite.

There is no immediately useful purpose for a quantum spin liquid, but White and fellow physicists think that if it is present in the mineral, they might some day be able to synthesize crystals to make highly efficient "quantum" computers. But it's a joy to have cracked a riddle in elegant, fairly simple form that's consumed him and other physicists for more than three decades.

The latest work, funded by the National Science Foundation, builds upon his success creating the density matrix renormalization group algorithm, which was appreciated right away by experts, and whose impact has steadily grown. Last summer, more than 200 physicists met to discuss the latest developments in quantum physics related to DMRG.

"White's seminal DMRG work continues to have a broad impact in many areas, including strongly correlated electron systems, where I've been fortunate to work with him, and for a range of problems in statistical mechanics, quantum chemistry and quantum information," says Douglas Scalapino, research professor of physics at UC Santa Barbara, whose primary scientific interests are superconductivity and magnetism. "It represents an important breakthrough that has created a new direction in computational physics."

White hasn't direclty profited from the widespread use of his algorithm and says making money isn't the point. "That's what my dad always wants to know," he jokes.

"Einstein didn't make a penny" off his theoretical work that led directly to lasers, he notes, not that he would ever compare himself to Albert Einstein. But he is gratified by the recognition he has received from fellow physicists, including one very important one.

"My uncle? Well, he's very proud," says White.

— Janet Wilson, University Communications

####

For more information, please click here

Contacts:
Irvine, CA 92697
949-824-5011

Copyright © University of California, Irvine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physics

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Quantum Computing

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

Squeezed quantum cats May 28th, 2015

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Quantum nanoscience

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project