Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum leaper: Acclaimed for a breakthrough algorithm, physicist Steven White is now first to model a new state of matter

Steve Zylius / University Communications
“Quantum mechanics is just so weird, and when you go deeper into it, it’s even weirder,” admits professor of physics & astronomy Steven White, whose simulation of a quantum spin liquid graces the cover of Science magazine’s June 3 issue.
Steve Zylius / University Communications
“Quantum mechanics is just so weird, and when you go deeper into it, it’s even weirder,” admits professor of physics & astronomy Steven White, whose simulation of a quantum spin liquid graces the cover of Science magazine’s June 3 issue.

Abstract:
When a firefighter visited Steven White's kindergarten class, the 5-year-old didn't want to try on his big helmet. He wanted to know what velocity of water his hose could spray. When a musician visited, the boy wanted to know the frequencies of the sound waves from her instrument.

Quantum leaper: Acclaimed for a breakthrough algorithm, physicist Steven White is now first to model a new state of matter

Irvine, CA | Posted on July 2nd, 2011

The teacher was so concerned she called his parents and advised them to stop putting so much academic pressure on their young son. "It's not us," they replied. "It's all him."

White, now 51 and a globally recognized UC Irvine professor of physics & astronomy, says his physicist uncle may have had something to do with his early scientific inquiries. By second grade, White had decided he wanted to be a physicist too.

Fast-forward almost five decades, and that childhood dream has more than come true. As a young UCI assistant professor in 1992, White published a pioneering computer algorithm that helped crack quantum mechanics conundrums and has since led to a whole new field of computational physics.

This month, his latest breakthrough, successfully modeling a quantum spin liquid, is featured on the cover of Science magazine. Such a liquid is a new state of matter invisible to the naked eye that experts more than 30 years ago hypothesized might exist. It could be a key to understanding superconductivity and building quantum computers. White and graduate student Simeng Yan - in collaboration with a Princeton University physicist - created the first realistic computer model conclusively identifying a quantum spin liquid, depicting it as a wedge of darkness above a floating red and blue lattice of atomic connections.

"It's a testament to Steve's continued groundbreaking work," says department chair Bill Parker. "Being on the cover of Science - the largest, most respected interdisciplinary journal in the world - is a great honor."

"It's great!" agrees White, a cheerful, down-to-earth man who admits his work is hard for even fellow physicists to understand. He tries valiantly to translate it via multicolored computer simulations, guest talks at major universities and patient conversations with nonscientists.

"Quantum mechanics is just so weird, and when you go deeper into it, it's even weirder," he says. Consider the title of the Science paper: "Spin-Liquid Ground State of the S = 1/2 Kagome Heisenberg Antiferromagnet."

White pulls out all the stops in a recent conversation, carefully explaining how he and Yan were able to model the super chilled liquid form of infinitesimally small, or quantum-sized, antimagnetic particles. To illustrate, he uses old black and white movies, a Japanese basket-weaving pattern known as kagome, and pictures of a green veined rock called herbertsmithite.

There is no immediately useful purpose for a quantum spin liquid, but White and fellow physicists think that if it is present in the mineral, they might some day be able to synthesize crystals to make highly efficient "quantum" computers. But it's a joy to have cracked a riddle in elegant, fairly simple form that's consumed him and other physicists for more than three decades.

The latest work, funded by the National Science Foundation, builds upon his success creating the density matrix renormalization group algorithm, which was appreciated right away by experts, and whose impact has steadily grown. Last summer, more than 200 physicists met to discuss the latest developments in quantum physics related to DMRG.

"White's seminal DMRG work continues to have a broad impact in many areas, including strongly correlated electron systems, where I've been fortunate to work with him, and for a range of problems in statistical mechanics, quantum chemistry and quantum information," says Douglas Scalapino, research professor of physics at UC Santa Barbara, whose primary scientific interests are superconductivity and magnetism. "It represents an important breakthrough that has created a new direction in computational physics."

White hasn't direclty profited from the widespread use of his algorithm and says making money isn't the point. "That's what my dad always wants to know," he jokes.

"Einstein didn't make a penny" off his theoretical work that led directly to lasers, he notes, not that he would ever compare himself to Albert Einstein. But he is gratified by the recognition he has received from fellow physicists, including one very important one.

"My uncle? Well, he's very proud," says White.

— Janet Wilson, University Communications

####

For more information, please click here

Contacts:
Irvine, CA 92697
949-824-5011

Copyright © University of California, Irvine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Physics

New breed of optical soliton wave discovered September 9th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Quantum Computing

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Quantum nanoscience

Chains of nanogold – forged with atomic precision September 23rd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic