Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Layer upon layer: Method holds promise for making two- or three-tier graphene films that could be used for new electronic devices

When compounds of bromine or chlorine (represented in blue) are introduced into a block of graphite (shown in green), the atoms find their way into the structure in between every third sheet, thus increasing the spacing between those sheets and making it easier to split them apart.
Image: Chih-Jen Shih/Christine Daniloff
When compounds of bromine or chlorine (represented in blue) are introduced into a block of graphite (shown in green), the atoms find their way into the structure in between every third sheet, thus increasing the spacing between those sheets and making it easier to split them apart.
Image: Chih-Jen Shih/Christine Daniloff

Abstract:
Graphene, a form of pure carbon arranged in a lattice just one atom thick, has interested countless researchers with its unique strength and its electrical and thermal conductivity. But one key property it lacks which would make it suitable for a plethora of new uses is the ability to form a band gap, needed for devices such as transistors, computer chips and solar cells.

Layer upon layer: Method holds promise for making two- or three-tier graphene films that could be used for new electronic devices

Cambridge, MA | Posted on June 29th, 2011

Now, a team of MIT scientists has found a way to produce graphene in significant quantities in a two- or three-layer form. When the layers are arranged just right, these structures give graphene the much-desired band gap an energy range that falls between the bands, or energy levels, where electrons can exist in a given material.

"It's a breakthrough in graphene technology," says Michael Strano, the Charles and Hilda Roddey Associate Professor of Chemical Engineering at MIT. The new work is described in a paper published this week in the journal Nature Nanotechnology, co-authored by graduate student Chih-Jen Shih, Professor of Chemical Engineering Daniel Blankschtein, Strano and 10 other students and postdocs.

Graphene was first proven to exist in 2004 (a feat that led to the 2010 Nobel Prize in physics), but making it in quantities large enough for anything but small-scale laboratory research has been a challenge. The standard method remains using adhesive tape to pick up tiny flakes of graphene from a block of highly purified graphite (the material of pencil lead) a technique that does not lend itself to commercial-scale production.

The new method, however, can be carried out at a scale that opens up the possibility of real, practical applications, Strano says, and makes it possible to produce the precise arrangement of the layers called A-B stacked, with the atoms in one layer centered over the spaces between atoms in the next that yields desirable electronic properties.

"If you want a whole lot of bilayers that are A-B stacked, this is the only way to do it," he says.

The trick takes advantage of a technique originally developed as far back as the 1950s and '60s by MIT Institute Professor Mildred Dresselhaus, among others: Compounds of bromine or chlorine introduced into a block of graphite naturally find their way into the structure of the material, inserting themselves regularly between every other layer, or in some cases every third layer, and pushing the layers slightly farther apart in the process. Strano and his team found that when the graphite is dissolved, it naturally comes apart where the added atoms lie, forming graphene flakes two or three layers thick.

"Because this dispersion process can be very gentle, we end up with much larger flakes" than anyone has made using other methods, Strano says. "Graphene is a very fragile material, so it requires gentle processing."

Such formations are "one of the most promising candidates for post-silicon nanoelectronics," the authors say in their paper. The flakes produced by this method, as large as 50 square micrometers in area, are large enough to be useful for electronic applications, they say. To prove the point, they were able to manufacture some simple transistors on the material.

The material can now be used to explore the development of new kinds of electronic and optoelectronic devices, Strano says. And unlike the "Scotch tape" approach to making graphene, "our approach is industrially relevant," Strano says.

James Tour, a professor of chemistry and of mechanical engineering and materials science at Rice University, who was not involved in this research, says the work involved "brilliant experiments" that produced convincing statistics. He added that further work would be needed to improve the yield of usable graphene material in their solutions, now at about 35 to 40 percent, to more than 90 percent. But once that is achieved, he says, "this solution-phase method could dramatically lower the cost of these unique materials and speed the commercialization of them in applications such as optical electronics and conductive composites."

While it's hard to predict how long it will take to develop this method to the point of commercial applications, Strano says, "it's coming about at a breakneck pace." A similar solvent-based method for making single-layer graphene is already being used to manufacture some flat-screen television sets, and "this is definitely a big step" toward making bilayer or trilayer devices, he says.

The work was supported by grants from the U.S. Office of Naval Research through a multi-university initiative that includes Harvard University and Boston University along with MIT, as well as from the Dupont/MIT Alliance, a David H. Koch fellowship, and the Army Research Office through the Institute for Soldier Nanotechnologies at MIT.

####

For more information, please click here

Contacts:
77 Massachusetts Avenue, Room 11-400
Cambridge, MA 02139-4307
617.253.2700
TTY 617.258.9344

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Graphene/ Graphite

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Printing Flexible Graphene Supercapacitors December 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Chip Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Discoveries

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Announcements

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Military

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

Research partnerships

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project