Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fluorescent Nanotubes Illuminate the Inner Workings of Laboratory Mice

Abstract:
Developing drugs to combat or cure human disease often involves a phase of testing with mice, so being able to peer clearly into a living mouse's innards has real value. But with the fluorescent dyes currently used to image the interior of laboratory mice, the view becomes murky a few millimeters under the skin. Now, however, a team of investigators from Stanford University has developed an improved imaging method using fluorescent carbon nanotubes that create color images centimeters beneath the skin with far more clarity than conventional dyes provide. For a creature the size of a mouse, a few centimeters makes a great difference.

Fluorescent Nanotubes Illuminate the Inner Workings of Laboratory Mice

Bethesda, MD | Posted on June 27th, 2011

"We have already used similar carbon nanotubes to deliver drugs to treat cancer in laboratory testing in mice, but you would like to know where your delivery went, right?" said Stanford University's Hongjie Dai, a member of the National Cancer Institute's Alliance for Nanotechnology in Cancer. "With the fluorescent nanotubes, we can do drug delivery and imaging simultaneously - in real time - to evaluate the accuracy of a drug in hitting its target." Dr. Dai and his collaborators published their findings in the Proceedings of the National Academy of Sciences.

Dr. Dai's team injects the single-walled carbon nanotubes into a mouse and then watches as the tubes are delivered to internal organs by the bloodstream. The nanotubes fluoresce brightly in response to the light of a laser directed at the mouse, while a camera attuned to the nanotubes' near-infrared wavelengths records the images. By attaching the nanotubes to an anticancer agent, researchers can see how the drug is progressing through the mouse's body.

The key to the nanotubes' usefulness is that they shine in a different portion of the near-infrared spectrum than most dyes. Biological tissues - whether mouse or human - naturally fluoresce at wavelengths below 900 nanometers, which is in the same range as the available biocompatible organic fluorescent dyes. That results in undesirable background fluorescence, which muddles the images when dyes are used. But the nanotubes used by Dai's group fluoresce at wavelengths between 1,000 and 1,400 nanometers.¬ There is barely any natural tissue fluorescence at those wavelengths, so background "noise" is minimal.

The nanotubes' usefulness is further boosted because tissue scatters less light in the longer wavelength region of the near-infrared, reducing image smearing as light moves or travels through the body. "The nanotubes fluoresce naturally, but they emit in a very oddball region," Dr. Dai said. "There are not many things - living or inert - that emit in this region, which is why it has not been explored very much for biological imaging." By selecting single-walled carbon nanotubes with different diameters and other properties, Dr. Dai and his team can fine-tune the wavelength at which the nanotubes fluoresce.

The nanotubes can be seen immediately upon injection into the bloodstream of mice. In fact, the Stanford team was able to see the fluorescent nanotubes passing through the lungs and kidneys within seconds of injection.¬ The spleen and liver lit up a few seconds later. "You can really see things that are deep inside or blocked by other organs such as the pancreas," Dr. Dai said.

There are other imaging methods that can produce deep tissue images, such as magnetic resonance imaging (MRI) and computer tomography (CT) scans, but fluorescence imaging is widely used in research and requires simpler machinery. Dr. Dai said that the fluorescent nanotubes are not capable of reaching the depth of CT or MRI scans, but represent a step forward in broadening the potential uses of fluorescence as an imaging system beyond the surface and near-surface. "I did not imagine [carbon nanotubes] could really be used in animals to get deep images like these," he said. "When you look at images like this, you get a sense that the body almost has some transparency to it."

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with todayís explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window."

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Discoveries

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project