Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Berkeley Scientists Pioneer Nanoscale Nuclear Materials Testing Capability

Scientists at Lawrence Berkeley National Laboratory and the University of California at Berkeley conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at the National Center for Electron Microscopy, the team could examine — with nanoscale resolution — the localized nature of this deformation. (Scales in nanometers, billionths of a meter)
Scientists at Lawrence Berkeley National Laboratory and the University of California at Berkeley conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at the National Center for Electron Microscopy, the team could examine — with nanoscale resolution — the localized nature of this deformation. (Scales in nanometers, billionths of a meter)

Abstract:
Nuclear power is a major component of our nation's long-term clean-energy future, but the technology has come under increased scrutiny in the wake of Japan's recent Fukushima disaster. Indeed, many nations have called for checks and "stress tests" to ensure nuclear plants are operating safely.

Berkeley Scientists Pioneer Nanoscale Nuclear Materials Testing Capability

Berkeley, CA | Posted on June 27th, 2011

In the United States, about 20 percent of our electricity and almost 70 percent of the electricity from emission-free sources, including renewable technologies and hydroelectric power plants, is supplied by nuclear power. Along with power generation, many of the world's nuclear facilities are used for research, materials testing, or the production of radioisotopes for the medical industry. The service life of structural and functional material components in these facilities is therefore crucial for ensuring reliable operation and safety.

Now scientists at Berkeley Lab, the University of California at Berkeley, and Los Alamos National Laboratory have devised a nanoscale testing technique for irradiated materials that provides macroscale materials-strength properties. This technique could help accelerate the development of new materials for nuclear applications and reduce the amount of material required for testing of facilities already in service.

"Nanoscale mechanical tests always give you higher strengths than the macroscale, bulk values for a material. This is a problem if you actually want to use a nanoscale test to tell you something about the bulk-material properties," said Andrew Minor, a faculty scientist in the National Center for Electron Microscopy (NCEM) and an associate professor in the materials science and engineering department at UC Berkeley. "We have shown you can actually get real properties from irradiated specimens as small as 400 nanometers in diameter, which really opens up the field of nuclear materials to take advantage of nanoscale testing."

In this study, Minor and his colleagues conducted compression tests of copper specimens irradiated with high-energy protons, designed to model how damage from radiation affects the mechanical properties of copper. By using a specialized in situ mechanical testing device in a transmission electron microscope at NCEM, the team could examine — with nanoscale resolution — the nature of the deformation and how it was localized to just a few atomic planes.

Three-dimensional defects within the copper created by radiation can block the motion of one-dimensional defects in the crystal structure, called dislocations. This interaction causes irradiated materials to become brittle, and alters the amount of force a material can withstand before it eventually breaks. By translating nanoscale strength values into bulk properties, this technique could help reactor designers find suitable materials for engineering components in nuclear plants.

"This small-scale testing technique could help extend the lifetime of a nuclear reactor," said co-author Peter Hosemann, an assistant professor in the nuclear engineering department at UC Berkeley. "By using a smaller specimen, we limit any safety issues related to the handling of the test material and could potentially measure the exact properties of a material already being used in a 40-year-old nuclear facility to make sure this structure lasts well into the future."

Minor adds, "Understanding how materials fail is a fundamental mechanistic question. This proof of principle study gives us a model system from which we can now start to explore real, practical materials applicable to nuclear energy. By understanding the role of defects on the mechanical properties of nuclear reactor materials, we can design materials that are more resistant to radiation damage, leading to more advanced and safer nuclear technologies."

A paper reporting this research titled, "In situ nanocompression testing of irradiated copper," appears in Nature Materials and is available to subscribers online. Co-authoring the paper with Minor and Hosemann were Daniel Kiener and Stuart Maloy. Portions of this work at the National Center for Electron Microscopy were supported by DOE's Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.

For more information, please click here

Contacts:
Aditi Risbud
510-486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project