Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cambridge NanoTech Expands ALD Research Capability

Abstract:
Cambridge NanoTech at the cutting-edge of nanotechnology development, is pleased to announce the introduction of Self-Assembled Monolayers (SAMs) capability in their line of Savannah Atomic Layer Deposition (ALD) systems. SAMs coatings are inexpensive and versatile and can be used in a wide variety of applications including control of wetting and adhesion, chemical resistance, bio compatibility, sensitization, and molecular recognition for sensors and nano fabrication. Areas of application for SAMs include biology, electrochemistry, electronics, nanoelectromechanical systems (NEMS), microelectromechanical systems (MEMS), and everyday household goods.

Cambridge NanoTech Expands ALD Research Capability

Cambridge, MA | Posted on June 27th, 2011

"We are pleased to provide this functionality to the ALD community to further expand their research capabilities. SAMs coatings open up a fairly large application space which are not addressed by other coating technologies," said Ganesh Sundaram, Vice President of Technology. "The Savannah enhanced with SAMs capability offers greater flexibility because of its ability to deposit ALD and SAMs films in one chamber."

The SAMs capability is available from Cambridge NanoTech for deposition on 100mm, 200mm, and 300mm size substrates or smaller pieces. Cambridge NanoTech's current customer base of the Savannah line may upgrade their systems to include the SAMs capability. The cost to add the SAMs functionality to new and existing Savannah systems is also more affordable than deposition equipment that is completely dedicated to SAMs coatings on the market.

A Savannah with SAMs capability will be on display in Cambridge NanoTech's booth at the American Vacuum Society's ALD 2011 conference this week at the Royal Sonesta in Cambridge, Massachusetts.

For more information, visit www.cambridgenanotech.com or call 617-674-8800.

####

About Cambridge NanoTech
Cambridge NanoTech delivers Atomic Layer Deposition (ALD) systems capable of depositing ultra-thin films that are used in a wide variety of research and industrial applications. Our manufacturing ALD systems are used in the production of semiconductors, flat panel displays, and solid state lighting. Cambridge NanoTech research systems are used by world class scientists on five continents to study superior ALD film properties such as electrical, anti-bacterial, UV-blocking, and anti-reflection.

For more information, please click here

Contacts:
Cambridge NanoTech
Andrea Klos
(617) 674 8800

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

NEMS

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

One string to rule them all April 17th, 2018

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project