Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NREL, German Solar Energy Researchers to Work Together: Scientists from the two nations to collaborate on next-generation PV and fuels

Abstract:
German and American researchers will work together more closely on solar energy topics as a result of today's signing of a Memo of Understanding (MOU) between the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and the German Helmholtz Association. The MOU identifies several key solar energy topics to explore for joint research cooperation.

NREL, German Solar Energy Researchers to Work Together: Scientists from the two nations to collaborate on next-generation PV and fuels

Golden, CO | Posted on June 26th, 2011

Scientists from the two countries, among other endeavors, will cooperate to synthesize and characterize novel materials that are candidates for more efficient solar cells and solar fuels.

They'll also develop and use fast imaging techniques to help characterize thin-film materials on the micrometer to nanometer scale, and to characterize in situ growth processes.

They'll seek a fundamental understanding of grain boundary/interface passivation in thin-film silicon and search for the potential and limits of wide band-gap thin-film solar cells. Thin films, made of copper, indium, gallium, selenium and other emerging materials, could potentially replace silicon as the most efficient materials in next-generation thin-film solar arrays.

To measure performance and reliability of solar cells and modules, the scientists will use electroluminescence, photoluminescence and thermography. They will also investigate the stability of solar cells by subjecting them to high temperatures and light exposures.

New device structures and lower cost catalysts will also be investigated for the generation of hydrogen in photocatalytic solar fuel generation.

The MOU was signed in Berlin by NREL Director Dan Arvizu, and leaders of three research institutes within the German Helmholtz Association - the Research Center Jülich (FZ Jülich), the Helmholtz Center Berlin (HZB), and the German Aerospace Center (DLR),

"This agreement promises to advance the state of knowledge and the development of new materials and technologies that will form the basis of next-generation solar cells and solar fuels," NREL Director Arvizu said.

In one area, the work builds on an MOU NREL signed two years ago with one of the German organizations, DLR, which involved developing standard test methods to quantitatively assess the reflectance and durability of solar mirrors used for concentrating solar power (CSP) systems. The MOU also called for round robin testing of commercial reflector samples and commercial parabolic trough receivers. In the new MOU, this work will be extended to understanding fundamental mechanisms for soiling rates on CSP mirrors

Overall, the new MOU sets the basis for collaboration on basic and applied research issues to advance the next generation of solar cells for electricity and solar fuel production. It also addresses the improvement of the performance of concentrating solar thermal power systems.

####

About NREL
NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy, LLC.

For more information, please click here

Contacts:
Media may contact:
William Scanlon
303-275-4051

Copyright © NREL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Scientists Design Molecular System for Artificial Photosynthesis: System is designed to mimic key functions of the photosynthetic center in green plants to convert solar energy into chemical energy stored by hydrogen fuel June 2nd, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Alliances/Trade associations/Partnerships/Distributorships

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Thought Leaders and Experts Join National Graphene Association Advisory Board June 16th, 2017

Microsoft, Purdue collaborate to advance quantum computing May 30th, 2017

Research partnerships

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Solar/Photovoltaic

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

In a project funded by the Austrian Science Fund FWF, the physicist Serdar Sarıçiftçi investigates possible uses in electronics of the semiconductor properties of indigo pigment June 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project