Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Los Alamos National Laboratory Earns Three R&D 100 Awards: Innovations could mean breakthroughs for energy and medical industries

NanoCluster Beacons—one of Los Alamos National Laboratory's 2011 R&D 100 Award winners—light up when they bind with specific nucleic acid targets and greatly outperform conventional molecular beacons, the “gold standard” of DNA light-up probes. As shown on the cover, NanoCluster Beacons are available in a rainbow of colors and are easily seen with the naked eye under ultraviolet (UV) light.
NanoCluster Beacons—one of Los Alamos National Laboratory's 2011 R&D 100 Award winners—light up when they bind with specific nucleic acid targets and greatly outperform conventional molecular beacons, the “gold standard” of DNA light-up probes. As shown on the cover, NanoCluster Beacons are available in a rainbow of colors and are easily seen with the naked eye under ultraviolet (UV) light.

Abstract:
Los Alamos National Laboratory scientists have won three of R&D Magazine's 2011 R&D100 Awards. Recognized as the "Oscars of Invention" by the Chicago Tribune, these awards honor the top 100 proven technological advances of the past year. The winning Laboratory technologies include a molecular beacon that targets specific nucleic acids, a spacer fluid for oil wells that shrinks when heated, and a better way to produce thorium, an elemental sustainable energy source.

Los Alamos National Laboratory Earns Three R&D 100 Awards: Innovations could mean breakthroughs for energy and medical industries

Los Alamos, NM | Posted on June 23rd, 2011

"I want to congratulate this year's R&D 100 award winners," said Energy Secretary Steven Chu. "The Department of Energy's national laboratories and sites are at the forefront of innovation, and it is gratifying to see their work recognized once again. The cutting-edge research and development done in our national labs and facilities is helping to meet our energy challenges, strengthen our national security, and enhance our economic competitiveness."
"Once again the RD 100 awards show that Los Alamos National Laboratory's multidisciplinary scientific approach provides real-world innovation with the potential to drive job creation in the private sector while delivering benefits to the American public," said LANL Director Charlie McMillan. "We are proud of our Los Alamos researchers, and I salute them all as well as the researchers from our sister labs and facilities who won R&D 100 Awards as well."

This year's winning technologies include:

NanoCluster Beacons

NanoCluster Beacons are collections of silver atoms designed to illuminate when bound to nucleic acids, such as the DNA of specific pathogens. Created by Hsin-Chih (Tim) Yeh, James Werner, Jaswinder Sharma, and Jennifer Martinez, these beacons can be used to probe for diseases that threaten humans by identifying the nucleic acid targets that represent a person's full genome, and allow for personalized medication. They can also be used in quantitative biology applications, such as counting individual molecules inside a cell.

Once bound with a specific target, a NanoCluster Beacon lights up, emitting fluorescence approximately 200 times greater than in the unbound state and easily viewed by the naked eye under ultraviolet light. The beacons come in an array of colors for multiplexed analyses, are more photostable than beaconsused today, and can be turned on and off reversibly. Inexpensive, easy to use, and reversible, NanoCluster Beacons are superior molecular probes for detecting specific targets, human oncogene (cancer) sequences, and molecular disease sequences such as sickle cell anemia.

Revolutionizing Deepwater Oil-Well Drilling

TAPSS, or Trapped Annular Pressure Shrinking Spacer, is a spacer fluid developed by Robert Hermes of LANL, in collaboration with Chevron Energy Technology Company, Baker Hughes Incorporated's Drilling Fluids Unit, and Lucite International Ltd., to help prevent catastrophes in offshore oil-well drilling. Conventional spacer fluids are placed between oil well casings to secure the well and balance the pressure exerted by the surrounding geological formations. Most of these fluids expand when heated during drilling, causing potential pressurebuild ups and disastrous oil spills. TAPSS, on the other hand, shrinks whenheated and can be used to offset any thermal expansion from the other fluids. TAPSS is formulated with enough methyl methacrylate to counteract the expansion of conventional spacer fluids. This new spacer is not difficult to use, is self-functioning, and requires minimal time to install.

TAPSS can be applied to any well around the world and will continue to work for the full life of the well, making it both effective and practical.

Thorium Is Now Green

Th-ING was developed by Jaqueline Kiplinger and Thibault Cantat as a straightforward, cost-effective, and safe method to produce thorium. Thorium is an element capable of producing more energy than both uranium and coal using significantly lower quantities. This element is only slightly radioactive, making it an excellent candidate for a future sustainable energy source. It is so safe that it will never lead to a nuclear meltdown when used in a nuclear reactor.

Before Th-ING, thorium could only be produced in hazardous settings at unreasonably high prices. This new method involves reacting thorium nitrate with aqueoushydrochloric acid under mild conditions, which can be performed using conventional glassware in a traditional laboratory setting. Then, a novel combination of anhydrous hydrochloric acid and trimethylsilyl chloride is used to remove coordinated water molecules, replacing them with dimethoxyethane to make the new thorium chloride
reagent. The process cuts costs of production from $5,000 per kilogram to a mere $30 per kilogram and is "green"—as it does not produce wasteful solvent ring-opening/polymerization or waste thorium (95 percent production yields). With Th-ING, thorium becomes a practical and reliable source of energy for the future.

Three Decades of Excellence in Innovation
Since 1978, Los Alamos has won 121 of the prestigious R&D100 Awards in R&D Magazine's global competition involving industry, academia, and government-sponsored research. Winners include innovative new materials, chemistry breakthroughs, consumer items, testing equipment, manufacturing advances, high-energy physics, and biomedical products.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for theDepartment of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

Contacts:
James E. Rickman
505-665-9203

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Scientists Design Molecular System for Artificial Photosynthesis: System is designed to mimic key functions of the photosynthetic center in green plants to convert solar energy into chemical energy stored by hydrogen fuel June 2nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project