Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Heidelberg Instruments to develop novel CU nanotechnology platform

Robert McLeod
Robert McLeod

Abstract:
A novel University of Colorado Boulder technique to shrink the size of circuitry used in nanotechnology devices like computer chips and solar cells by zapping a substrate with two separate colors of light beams has been optioned to Heidelberg Instruments headquartered in Heidelberg, Germany.

Heidelberg Instruments to develop novel CU nanotechnology platform

Boulder, CO | Posted on June 23rd, 2011

The CU technology was developed by Associate Professor Robert McLeod of the electrical, computer and energy engineering department, Visiting Assistant Professor Tim Scott of the chemical and biological engineering department and Professor Christopher Bowman of the chemical and biological engineering department. The three researchers, along with graduate students Benjamin Kowalski and Amy Sullivan (Sullivan is now a faculty member at Agnes Scott College in Decatur, Ga.) first published the details of the new technology in a 2009 issue of Science magazine.

Licensed to Heidelberg Instruments by the University of Colorado Technology Transfer Office, the patent pending method involves using a tightly focused beam of blue light to etch lines and dots thousands of times smaller than the width of a human hair into lithography patterns on a substrate such as silicon, said McLeod. A second beam of light, this one ultraviolet, is then used to "erase" the edges of the pattern, resulting in much smaller structures, he said.

"The University of Colorado is one of the leading R&D centers making major inroads in nanoscale technology development," said Alexander Forozan, head of global business development at Heidelberg Instruments. "We are thrilled to work with CU's outstanding staff and look forward to a continuing and long-lasting relationship."

Said Ted Weverka, a licensing manager at the CU Technology Transfer Office, "We are excited to have Heidelberg as a partner for this technology. Heidelberg's technical know-how and market savvy ensure a strong future for this invention."

To develop the technique, McLeod and his colleagues used a tabletop laser to project tightly focused beams of visible blue light onto liquid molecules known as monomers. A chemical reaction initiated a bonding of the monomers into a plastic-like polymer solid. Focusing the blue beam in one place inscribed a small, solid dot. If the beam moved the focus across the material, it created a thin thread, or line.

The CU researchers then added a second ultraviolet laser focused into a halo, or donut, which surrounded the blue light. The special monomer formulation was designed to be inhibited by the UV light, shutting down its transformation from a liquid to a solid, he said. This "halo of inhibition" prevented the edges of the spot or line from developing, resulting in a much finer final structure.

McLeod said the new technology has the potential to lead to the construction of a variety of nanotechnology devices, including electronic circuits and nanomechanical devices. "This is a new set of new tools that provide a new way to do nanotechnology," McLeod said.

The method offers the potential to shrink transistor circuitry, a process that drives the global electronic market that is continually pursuing smaller, more powerful microchips, said McLeod, whose research on the project was funded by the National Science Foundation and through the University of Colorado Innovative Seed Program. In 2010, McLeod received an NSF CAREER award for his achievements, one of the most prestigious honors directed toward young faculty.

The CU Technology Transfer Office pursues, protects, packages and licenses the intellectual property generated from research at CU to businesses. The office provides assistance to faculty, staff and students as well as businesses interested in licensing or investing in CU technology.

Founded in 1984 and which now operates in more than 30 countries, Heidelberg Instruments is one of the world's leading companies in high-precision lithography systems.

For more information about technology transfer at CU visit www.cu.edu/techtransfer.

####

For more information, please click here

Contacts:
Robert McLeod
303-735-0997


Lindsay Lennox
CU Technology Transfer Office
303-735-5518


Alexander Forozan
Heidelberg Instruments
310-871-9944


Jim Scott
CU media relations
303-492-3114


Copyright © University of Colorado Boulder

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Chip Technology

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Patents/IP/Tech Transfer/Licensing

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Energy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Solar/Photovoltaic

From Narrow to Broad July 30th, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE