Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Heidelberg Instruments to develop novel CU nanotechnology platform

Robert McLeod
Robert McLeod

Abstract:
A novel University of Colorado Boulder technique to shrink the size of circuitry used in nanotechnology devices like computer chips and solar cells by zapping a substrate with two separate colors of light beams has been optioned to Heidelberg Instruments headquartered in Heidelberg, Germany.

Heidelberg Instruments to develop novel CU nanotechnology platform

Boulder, CO | Posted on June 23rd, 2011

The CU technology was developed by Associate Professor Robert McLeod of the electrical, computer and energy engineering department, Visiting Assistant Professor Tim Scott of the chemical and biological engineering department and Professor Christopher Bowman of the chemical and biological engineering department. The three researchers, along with graduate students Benjamin Kowalski and Amy Sullivan (Sullivan is now a faculty member at Agnes Scott College in Decatur, Ga.) first published the details of the new technology in a 2009 issue of Science magazine.

Licensed to Heidelberg Instruments by the University of Colorado Technology Transfer Office, the patent pending method involves using a tightly focused beam of blue light to etch lines and dots thousands of times smaller than the width of a human hair into lithography patterns on a substrate such as silicon, said McLeod. A second beam of light, this one ultraviolet, is then used to "erase" the edges of the pattern, resulting in much smaller structures, he said.

"The University of Colorado is one of the leading R&D centers making major inroads in nanoscale technology development," said Alexander Forozan, head of global business development at Heidelberg Instruments. "We are thrilled to work with CU's outstanding staff and look forward to a continuing and long-lasting relationship."

Said Ted Weverka, a licensing manager at the CU Technology Transfer Office, "We are excited to have Heidelberg as a partner for this technology. Heidelberg's technical know-how and market savvy ensure a strong future for this invention."

To develop the technique, McLeod and his colleagues used a tabletop laser to project tightly focused beams of visible blue light onto liquid molecules known as monomers. A chemical reaction initiated a bonding of the monomers into a plastic-like polymer solid. Focusing the blue beam in one place inscribed a small, solid dot. If the beam moved the focus across the material, it created a thin thread, or line.

The CU researchers then added a second ultraviolet laser focused into a halo, or donut, which surrounded the blue light. The special monomer formulation was designed to be inhibited by the UV light, shutting down its transformation from a liquid to a solid, he said. This "halo of inhibition" prevented the edges of the spot or line from developing, resulting in a much finer final structure.

McLeod said the new technology has the potential to lead to the construction of a variety of nanotechnology devices, including electronic circuits and nanomechanical devices. "This is a new set of new tools that provide a new way to do nanotechnology," McLeod said.

The method offers the potential to shrink transistor circuitry, a process that drives the global electronic market that is continually pursuing smaller, more powerful microchips, said McLeod, whose research on the project was funded by the National Science Foundation and through the University of Colorado Innovative Seed Program. In 2010, McLeod received an NSF CAREER award for his achievements, one of the most prestigious honors directed toward young faculty.

The CU Technology Transfer Office pursues, protects, packages and licenses the intellectual property generated from research at CU to businesses. The office provides assistance to faculty, staff and students as well as businesses interested in licensing or investing in CU technology.

Founded in 1984 and which now operates in more than 30 countries, Heidelberg Instruments is one of the world's leading companies in high-precision lithography systems.

For more information about technology transfer at CU visit www.cu.edu/techtransfer.

####

For more information, please click here

Contacts:
Robert McLeod
303-735-0997


Lindsay Lennox
CU Technology Transfer Office
303-735-5518


Alexander Forozan
Heidelberg Instruments
310-871-9944


Jim Scott
CU media relations
303-492-3114


Copyright © University of Colorado Boulder

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Chip Technology

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Announcements

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Patents/IP/Tech Transfer/Licensing

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

New nanoscale technologies could revolutionize microscopes, study of disease July 20th, 2016

Keystone Nano selected as a top scoring company by NCI investor review panel July 19th, 2016

Energy

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Solar/Photovoltaic

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic