Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Berkeley Lab Wins Two R&D 100 Awards for 2011

Glass slide placed in a freezer then exposed to humid air at room temperature. Fog formed on the uncoated portion of the slide (a) while portion (b), coated with superhydrophilic nanoparticles, remained fog free.
Glass slide placed in a freezer then exposed to humid air at room temperature. Fog formed on the uncoated portion of the slide (a) while portion (b), coated with superhydrophilic nanoparticles, remained fog free.

Abstract:
From the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab), a nanostructured anti-fogging technology for glass that out performs anything on the market today, and a new version of Magnetic Resonance Imaging (MRI) - called Magnetic Resonance Microarray Imaging - that delivers results a million times faster than conventional MRI, have both won 2011 R&D 100 awards, also known as the "Oscars of Innovation."

Berkeley Lab Wins Two R&D 100 Awards for 2011

Berkeley, CA | Posted on June 23rd, 2011

Presented by R&D Magazine, the R&D 100 Awards recognize the year's 100 most significant proven technological advances. The two awards in 2011 bring the total of Berkeley Lab's R&D 100 wins to 58, plus two Editors' Choice Awards.

In all, DOE's national laboratories and facilities won 36 R&D 100 Awards this year. In response, Energy Secretary Steven Chu released this statement.

"I want to congratulate this year's R&D 100 award winners. The Department of Energy's national laboratories and facilities are at the forefront of innovation, and it is gratifying to see their work recognized once again. The cutting-edge research and development done in our national labs and facilities is helping to meet our energy challenges, strengthen our national security and enhance our economic competitiveness."

Invention of the "Nanostructured Antifogging Coating" technology was led by Samuel Mao, and members of his research group, Vasileia Zormpa and Xiaobo Chen, all with Berkeley Lab's Energy and Environmental Technologies Division (EETD). This technology is designed to provide a durable, nontoxic, antifogging and self-cleaning coating for architectural glass, windshields, eyewear and solar panels.

The coating consists of nanoparticles made from superhydrophilic titanium dioxide. When applied to glass surfaces, these nanoparticles cause water droplets to collapse and flatten within fractions of a second. Water vapor, however, can infiltrate spaces formed by nanoparticle overhangs to dislodge dust and grime from the coated surface. This keeps the glass clean, a big water- saving factor for windows in commercial buildings. It could also be used to improve the efficiency of solar panels in dusty, desert environments.

"No chemical catalysts or UV radiation are required to activate the coating so therefore it works at night," says Mao, who directs the Clean Energy Laboratory for EETD. "Also, because the coating is non-toxic, unlike some of its competitors, it can be used on dental mirrors and food wrap in refrigerated displays."

Tests have shown Berkeley Lab's Nanostructured Antifogging Coating to be more transparent, last much longer (years compared to months) and cost less than competing antifogging technologies.

Invention of the Magnetic Resonance Microarray Imaging (MMRI) technology was led by Alexander Pines, an internationally recognized leader in the development of Nuclear Magnetic Resonance (NMR) spectroscopy and its daughter technology MRI, and by Vikram Bajaj, a Project Scientist in Pines' research group. Other principal investigators on the development team behind this work were David Wemmer and Matthew Francis. Pines, Bajaj and Francis are affiliated with Berkeley Lab's Materials Sciences Division; Wemmer is with the Physical Biosciences Division.

MMRI combines remote instrumentation, JPEG-style image compression algorithms, and other key enhancements to image materials flowing through microfluidic "lab-on-a-chip" devices and zoom in on microscopic objects of particular interest with unprecedented spatial and time resolutions. Portable and magnet-free, MMRI technology can provide fast, on-site analyses of medical, environmental or industrial fluids. With its high degree of spatial resolution, it can quickly capture the results of hundreds or thousands of parallel assays on a single microfluidic chip.

"Our technology enables time-resolved imaging of multi-channel flow; dispenses with the need for large, expensive magnets for NMR analysis; is able to assay complex, unprocessed mixtures in one pass; and adds portability to NMR/MRI," Bajaj says. "The cost of components for our MMRI technology is also far less than conventional NMR/MRI components."

Berkeley Lab's R&D 100 nominations are submitted through its Technology Transfer and Intellectual Property Management Department, which is headed by Cheryl Fragiadakis.

"This year's winning Berkeley Lab technologies demonstrate our researchers' dedication to real world applications and impacts," Fragiadakis says. "I congratulate the research and staff who prepared the award entries. Being recognized by the R&D100 Awards is a welcome acknowledgement of their work."

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read the DOE press release on all of the national laboratory R&D 100 Awards go here:

For more about Berkeley Lab’s R&D 100 Awards visit the Website at:

For more about Berkeley Lab’s Technology Transfer and Intellectual Property Management Department

For more information about R&D Magazine’s R&D 100 Awards program visit the Website at:

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic