Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Penn Researchers Break Light-Matter Coupling Strength Limit in Nanoscale Semiconductors

Abstract:
New engineering research at the University of Pennsylvania demonstrates that polaritons have increased coupling strength when confined to nanoscale semiconductors. This represents a promising advance in the field of photonics: smaller and faster circuits that use light rather than electricity.

Penn Researchers Break Light-Matter Coupling Strength Limit in Nanoscale Semiconductors

Philadelphia, PA | Posted on June 23rd, 2011

The research was conducted by assistant professor Ritesh Agarwal, postdoctoral fellow Lambert van Vugt and graduate student Brian Piccione of the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science. Chang-Hee Cho and Pavan Nukala, also of the Materials Science department, contributed to the study.

Their work was published in the journal Proceedings of the National Academy of Sciences.

Polaritons are quasiparticles, combinations of physical particles and the energy they contribute to a system that can be measured and tracked as a single unit. Polaritons are combinations of photons and another quasiparticle, excitons. Together, they have qualities of both light and electric charge, without being fully either.

"An exciton is a combination of a an electron, which has negative charge and an electron hole, which has a positive charge. Light is an oscillating electro-magnetic field, so it can couple with the excitons," Agarwal said. "When their frequencies match, they can talk to one another; both of their oscillations become more pronounced."

High light-matter coupling strength is a key factor in designing photonic devices, which would use light instead of electricity and thus be faster and use less power than comparable electronic devices. However, the coupling strength exhibited within bulk semiconductors had always been thought of as a fixed property of the material they were made of.

Agarwal's team proved that, with the proper fabrication and finishing techniques, this limit can be broken.

"When you go from bulk sizes to one micron, the light-matter coupling strength is pretty constant," Agarwal said. "But, if you try to go below 500 nanometers or so, what we have shown is that this coupling strength increases dramatically."

The difference is a function of one of nanotechnology's principle phenomena: the traits of a bulk material are different than structures of the same material on the nanoscale.

"When you're working at bigger sizes, the surface is not as important. The surface to volume ratio the number of atoms on the surface divided by the number of atoms in the whole material is a very small number," Agarwal said. "But when you make a very small structure, say 100 nanometers, this number is dramatically increased. Then what is happening on the surface critically determines the device's properties."

Other researchers have tried to make polariton cavities on this small a scale, but the chemical etching method used to fabricate the devices damages the semiconductor surface. The defects on the surface trap the excitons and render them useless.

"Our cadmium sulfide nanowires are self-assembled; we don't etch them. But the surface quality was still a limiting factor, so we developed techniques of surface passivation. We grew a silicon oxide shell on the surface of the wires and greatly improved their optical properties," Agarwal said.

The oxide shell fills the electrical gaps in the nanowire surface, preventing the excitons from getting trapped.

"We also developed tools and techniques for measuring this light-matter coupling strength," Piccione said. "We've quantified the light-matter coupling strength, so we can show that it's enhanced in the smaller structures,"

Being able to quantify this increased coupling strength opens the door for designing nanophotonic circuit elements and devices.

"The stronger you can make light-matter coupling, the better you can make photonic switches," Agarwal said. "Electrical transistors work because electrons care what other electrons are doing, but, on their own, photons do not interact with each other. You need to combine optical properties with material properties to make it work"

This research was supported by the Netherlands Organization for Scientific Research Rubicon Programme, the U.S. Army Research Office, the National Science Foundation, Penn's Nano/Bio Interface Center and the National Institutes of Health.

####

For more information, please click here

Contacts:
Office of University Communications
200 Sansom Place East, 3600 Chestnut Street
Philadelphia, PA 19104-6106

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Optical computing/ Photonic computing

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

Nanoparticles Break the Symmetry of Light October 6th, 2014

Discoveries

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Announcements

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Photonics/Optics/Lasers

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

Research partnerships

Unraveling the light of fireflies December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE