Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Lumerical Introduces Fast, Broadband Omnidirectional Waveguide Design Tool with MODE Solutions 5.0

Abstract:
Lumerical Solutions, Inc. (www.lumerical.com), a global provider of nanophotonic design software, today introduced MODE Solutions 5.0, the latest upgrade to its MODE Solutions waveguide design product. MODE Solutions 5.0 extends the flexible eigensolver technology of MODE Solutions 5.0 to include an electromagnetic propagator able to address optical components measuring up to hundreds of microns in extent, including silicon photonics components, optical interconnects, photonic crystal devices and resonators. MODE Solutions 5.0 incorporates prior advances in distributed and concurrent computing and optimization developed for FDTD Solutions to provide optimization and job distribution capabilities within MODE Solutions that will streamline the design of complex integrated optical devices destined for next-generation devices, components and sub-systems.

Lumerical Introduces Fast, Broadband Omnidirectional Waveguide Design Tool with MODE Solutions 5.0

Vancouver, Canada | Posted on June 22nd, 2011

"The new propagator feature in MODE Solutions 5.0 is based on a fully vectorial approach that provides 2.5D accuracy with only the computational expense of a 2D algorithm," said Dr. James Pond, Lumerical's CTO. "With the ability to model dispersive materials over wide bandwidths in a single calculation, and without the limitation of many propagation methods that only work along a single optical axis, MODE Solutions will address a broad set of guided-wave applications with Lumerical's proven expertise at solving tough design problems of interest to our customers world-wide."

Fast and Accurate Design Assessment

By leveraging Lumerical's expertise in distributed computing on HPC systems and concurrent computing on cluster systems and in traditional office networks, the optimization and job distribution capabilities of MODE Solutions 5.0 allows designers to launch multiple parallel jobs on a number of independent computer resources without having to leave their workstation.

"The waveguide mode solver in MODE Solutions provides fast and precise optical mode calculation of large mode area fibers for high power, high pulse energy fiber amplifiers," said Xiang Peng, Senior Research Scientist at Raydiance, Inc. "MODE Solutions can analyze the impact of bend radius on effective mode area and the onset of self-phase modulation in fiber amplifiers and lasers, and optimize fiber tapers for application to fiber mode field adaptors. We anticipate that the built-in job distribution and design optimization capabilities of MODE Solutions 5.0 will be able to simulate the optical performance very accurately of all the fiber optical components in high power and high energy fiber amplifiers and lasers."

Powerful Capabilities for Silicon Photonics

According to Mark Webster of Lightwire, Inc., ""We use MODE Solutions extensively for developing silicon photonic devices. Its accuracy and scripting environment enables us to design and characterize devices with speed and confidence, and the new built-in optimizer and concurrent computing capabilities will make this even better. The new propagator feature is a unique and exciting development that we look forward to using with more challenging designs. Combined with FDTD Solutions, we believe this is the industry's leading waveguide design and simulation suite for silicon photonics."

The ability of MODE Solutions to address larger components than can be addressed with FDTD techniques, combined with its omnidirectional approach which overcomes the inherent challenges of BPM-like design tools enables MODE Solutions to address large, high-index contrast components like multi-ring cascaded resonator filters, Bragg waveguide gratings, polarization diversity receiver optical circuits, contradirectional waveguide couplers, embedded ring resonators and photonic crystals."Our research group, as well as the CMC-UBC Silicon Nanophotonics Fabrication course, uses Lumerical FDTD and MODE Solutions for silicon photonic device and circuit design," added Professor Lukas Chrostowski at the University of British Columbia. "The propagator in MODE Solutions 5.0 is a significant new feature that will be critical for accurately simulating silicon photonic integrated circuits. The optimization and parameter sweeping tools will be valuable in quickly optimizing our designs, particularly since Lumerical takes advantage of our cluster, and perhaps more importantly also performs distributed optimization using the numerous desktop computers available at the university."

Researchers and designers can access the concurrent computing capabilities available in MODE Solutions 5.0 by obtaining Extra Engines licenses. Each additional Extra Engine license enables another computer resource to process an independent job as part of a larger parameter sweep or optimization task. By deploying MODE Solutions 5.0 together with Extra Engines, users can make maximal use of their available computing resources to rapidly explore a broad parameter space to identify the best design.

Availability

Lumerical is now shipping release 5.0 of MODE Solutions. Interested parties can download a free, 30-day trial online or learn more about MODE Solutions by visiting www.lumerical.com/mode.

####

About Lumerical Solutions, Inc.
Since its inception in 2003, Lumerical has pioneered breakthrough simulation technologies that help bring new optical product concepts to life. By empowering research and product development professionals with high performance optical design software that leverages recent advances in computing technology, Lumerical helps optical designers tackle challenging design goals and meet strict deadlines. Lumerical's design software solutions are employed in more than 30 countries by global technology leaders like Agilent, ASML, Bosch, Canon, Harris, Northrop Grumman, Olympus, Philips, Samsung, and STMicroelectronics, and prominent research institutions including Caltech, Harvard, Max Planck Institute, MIT, NIST, University of Tokyo and the Chinese Academy of Sciences. Discover how Lumerical can help you meet your own design objectives by visiting us online at www.lumerical.com.

For more information, please click here

Contacts:
Kristina Lee
Lumerical Solutions, Inc.
604-733-9006 Ext. 204

Copyright © Lumerical Solutions, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Software

Researchers from the California NanoSystems Institute at UCLA have created a new technique that greatly enhances digital microscopy images January 27th, 2016

Digital Surf launches revolutionary SEM image colorization January 26th, 2016

Materials scientists at FAU reconstruct turbine material atom by atom in computer simulations January 19th, 2016

NanoOK: Quality Control for portable, rapid, low-cost DNA sequencing December 21st, 2015

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Photonics/Optics/Lasers

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Scientists create laser-activated superconductor February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic