Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stretching Old Material Yields New Results for Energy- and Environment-related Devices

This image illustrates how the channels in a polymer electrolyte membrane material change when you stretch it. On the left is an unstretched sample of the material. The middle sample has been stretched at a ratio of 2:1, while the sample on the right, which shows the most channel alignment, has been stretched at a ratio of 4:1.

Credit: Dr. Jing Li and Prof. Louis Madsen of Virginia Tech
This image illustrates how the channels in a polymer electrolyte membrane material change when you stretch it. On the left is an unstretched sample of the material. The middle sample has been stretched at a ratio of 2:1, while the sample on the right, which shows the most channel alignment, has been stretched at a ratio of 4:1.

Credit: Dr. Jing Li and Prof. Louis Madsen of Virginia Tech

Abstract:
Researchers at Virginia Tech in Blacksburg, Va. recently found a way to improve electricity generating fuel cells, potentially making them more efficient, powerful and less expensive. Specifically, they discovered a way to speed up the flow and filtering of water or ions, which are necessary for fuel cells to operate.

Stretching Old Material Yields New Results for Energy- and Environment-related Devices

Arlington, VA | Posted on June 21st, 2011

Simply put, the researchers stretched Nafion, a polymer electrolyte membrane, or PEM, commonly used in fuel cells and increased the speed at which it selectively filters substances from ions and water.

The resulting process could be important to a number of energy and environment-related applications such as any of several industrial processes that involve filtering, including improving batteries in cars, water desalination and even the production of artificial muscles for robots.

The journal Nature Materials published the results in its June 19 issue in the article, "Linear coupling of alignment with transport in a polymer electrolyte membrane," by Jing Li, Jong Keun Park, Robert B. Moore and Louis A. Madsen, all with the chemistry department in the College of Science and the Macromolecules and Interfaces Institute at Virginia Tech.

"I got the idea for some of these experiments after I saw Bob Moore give a talk at the University of North Carolina about Nafion when I was a post-doc there working with liquid crystals," said Madsen, an assistant professor of physical, polymer and materials chemistry who led the study.

In order to improve PEMs, Madsen and Virginia Tech Chemistry Professor Robert Moore studied exactly how water moves through Nafion at the molecular level and measured how changes in the structure of the material affected water flow. They found stretching it caused channels in the PEM material to align in the direction of the stretch, allowing water to flow through faster.

"Stretching drastically influences the degree of alignment," said Madsen. "So the molecules move faster along the direction of the stretch, and in a very predictable way. These materials actually share some properties with liquid crystals--molecules that line up with each other and are used in every LCD television, projector and screen."

"This is a very clever approach which demonstrates the advantages of interdisciplinary materials research and which may offer important benefits to both energy technologies and sustainability of our natural resources," said Andy Lovinger, polymers program director in the National Science Foundation's Division of Materials Research, which funded the study.

Nafion was discovered in the 1960's and is made up of molecules that combine the non-stick and tough nature of Teflon with the conductive properties of an acid. It is one of many PEMs used to filter water and ions that the researchers say could benefit from the stretching process.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Lisa Van Pay
NSF
(703) 292-8796


Susan Trulove
Virginia Tech
(540) 231-5646


Program Contacts
Andrew J. Lovinger
NSF
(703) 292-4933


Principal Investigators
Louis Madsen
Virginia Tech
(540) 231-1270

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Discoveries

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Water

Atomic scale pipes available on demand and by design September 9th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Fish 'biowaste' converted to piezoelectric energy harvesters: Jadavpur University researchers in India devised a way to recycle fish byproducts into an energy harvester for self-powered electronics September 8th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Fuel Cells

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic