Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stretching Old Material Yields New Results for Energy- and Environment-related Devices

This image illustrates how the channels in a polymer electrolyte membrane material change when you stretch it. On the left is an unstretched sample of the material. The middle sample has been stretched at a ratio of 2:1, while the sample on the right, which shows the most channel alignment, has been stretched at a ratio of 4:1.

Credit: Dr. Jing Li and Prof. Louis Madsen of Virginia Tech
This image illustrates how the channels in a polymer electrolyte membrane material change when you stretch it. On the left is an unstretched sample of the material. The middle sample has been stretched at a ratio of 2:1, while the sample on the right, which shows the most channel alignment, has been stretched at a ratio of 4:1.

Credit: Dr. Jing Li and Prof. Louis Madsen of Virginia Tech

Abstract:
Researchers at Virginia Tech in Blacksburg, Va. recently found a way to improve electricity generating fuel cells, potentially making them more efficient, powerful and less expensive. Specifically, they discovered a way to speed up the flow and filtering of water or ions, which are necessary for fuel cells to operate.

Stretching Old Material Yields New Results for Energy- and Environment-related Devices

Arlington, VA | Posted on June 21st, 2011

Simply put, the researchers stretched Nafion, a polymer electrolyte membrane, or PEM, commonly used in fuel cells and increased the speed at which it selectively filters substances from ions and water.

The resulting process could be important to a number of energy and environment-related applications such as any of several industrial processes that involve filtering, including improving batteries in cars, water desalination and even the production of artificial muscles for robots.

The journal Nature Materials published the results in its June 19 issue in the article, "Linear coupling of alignment with transport in a polymer electrolyte membrane," by Jing Li, Jong Keun Park, Robert B. Moore and Louis A. Madsen, all with the chemistry department in the College of Science and the Macromolecules and Interfaces Institute at Virginia Tech.

"I got the idea for some of these experiments after I saw Bob Moore give a talk at the University of North Carolina about Nafion when I was a post-doc there working with liquid crystals," said Madsen, an assistant professor of physical, polymer and materials chemistry who led the study.

In order to improve PEMs, Madsen and Virginia Tech Chemistry Professor Robert Moore studied exactly how water moves through Nafion at the molecular level and measured how changes in the structure of the material affected water flow. They found stretching it caused channels in the PEM material to align in the direction of the stretch, allowing water to flow through faster.

"Stretching drastically influences the degree of alignment," said Madsen. "So the molecules move faster along the direction of the stretch, and in a very predictable way. These materials actually share some properties with liquid crystals--molecules that line up with each other and are used in every LCD television, projector and screen."

"This is a very clever approach which demonstrates the advantages of interdisciplinary materials research and which may offer important benefits to both energy technologies and sustainability of our natural resources," said Andy Lovinger, polymers program director in the National Science Foundation's Division of Materials Research, which funded the study.

Nafion was discovered in the 1960's and is made up of molecules that combine the non-stick and tough nature of Teflon with the conductive properties of an acid. It is one of many PEMs used to filter water and ions that the researchers say could benefit from the stretching process.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Lisa Van Pay
NSF
(703) 292-8796


Susan Trulove
Virginia Tech
(540) 231-5646


Program Contacts
Andrew J. Lovinger
NSF
(703) 292-4933


Principal Investigators
Louis Madsen
Virginia Tech
(540) 231-1270

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project