Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research Helps Ensure Clean Integrated Circuit Manufacturing

Abstract:
Semiconductor Research Corporation (SRC), the world's leading university-research consortium for semiconductors and related technologies, and researchers from SEMATECH and The University of Texas at Dallas are the first to demonstrate that specific potentially hazardous organic contaminants present in a type of single-walled carbon nanotubes (SWNTs) can be easily removed. This discovery should enable the continued consideration of SWNTs for advanced nanoelectronics manufacturing, as this material shows promise for continuing the benefits of scaling with significantly reduced risk to the environment. In addition to semiconductor manufacturers, several other industries also could gain greater product effectiveness from this research.

Research Helps Ensure Clean Integrated Circuit Manufacturing

Research Triangle Park, NC | Posted on June 20th, 2011

The research team analyzed the potential risk of a variety of functionalized SWNTs, and found that one family of nanotubes, carboxylated single-walled carbon nanotubes (CSWNTs), reduced the ability of mammalian cells to grow in culture. This is considered to be evidence of toxicity. However, researchers also found that standard separation techniques could remove the contaminating material, indicating that the purified nanotubes themselves were not responsible for the observed toxicity. The data suggests that specific organic impurities present in the CSWNTs may be responsible for much of the concern associated with this material, and further work is in progress to test this idea.

"The process for removing the toxic material from the CSWNTs is relatively easy, and could be applied to this type of common SWNT if it's to be used in a semiconductor manufacturing facility," said Rockford Draper, Professor, Departments of Molecular & Biology and Chemistry at the University of Texas at Dallas. "These insights could affect the way companies purchase and use certain SWNTs."

SRC's Center for Environmentally Benign Semiconductor Manufacturing supports a major effort to understand, assess and screen emerging materials for their potential impact on human health, safety and the environment—well before they are considered for the manufacturing of integrated circuits.

"In the International Technology Roadmap for Semiconductors, SWNTs are positioned as emerging research materials with several potential application opportunities. As this technology continues to evolve, SWNTs may help to enable the extensible manufacturability of scaled integrated circuits into the deep nanometer regime," said Dan Herr, SRC Director of Nanomanufacturing Sciences. "Our Center for Environmentally Benign Semiconductor Manufacturing focuses on developing high performance green materials and processes, with minimal environmental safety and health impact. It is developing tools for rapidly screening new candidate materials for their hazard and manufacturing potential, early in their research life cycle."

In the UT Dallas research, the data suggests that small carbon fragments generated during the CSWNT production process may be the cause of observed toxicity, which is distinct from SWNTs. The presence of small oxidized carbon fragments in CSWNTs has been previously reported by industry researchers, but this is the first data to suggest it could be toxic.

The research is directed by SRC through the Center for Environmentally Benign Semiconductor Manufacturing, which anticipates and addresses future industry needs, with additional funding by the National Institute of Environmental Health Sciences.

For more information and details about the research, see the forthcoming manuscript entitled "Cytotoxicity Screening of Single-Walled Carbon Nanotubes: Detection and Removal of Cytotoxic Contaminants from Carboxylated Carbon Nanotubes" by Wang et al, that has been recommended for publication in Molecular Pharmaceutics.

####

About Semiconductor Research Corporation (SRC)
Celebrating 29 years of collaborative research for the semiconductor industry, SRC defines industry needs, invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America’s highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry.

For more information, please click here

Copyright © Semiconductor Research Corporation (SRC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

Chip Technology

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Announcements

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Environment

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Nanostructures taste the rainbow: Combining nanophotonics and thermoelectrics, engineers at Caltech generate materials capable of distinguishing between tiny differences in wavelengths of light June 30th, 2017

New photoacoustic technique detects gases at parts-per-quadrillion level June 30th, 2017

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Advanced Nanomechanical Characterization Centre Open in India: Nanomechanics, Inc. announces the establishment of the joint technology development center in Hyderabad, India July 5th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Research partnerships

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Triple-layer catalyst does double duty: Rice, University of Houston produce robust catalyst to split water into hydrogen, oxygen July 28th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project