Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research Helps Ensure Clean Integrated Circuit Manufacturing

Abstract:
Semiconductor Research Corporation (SRC), the world's leading university-research consortium for semiconductors and related technologies, and researchers from SEMATECH and The University of Texas at Dallas are the first to demonstrate that specific potentially hazardous organic contaminants present in a type of single-walled carbon nanotubes (SWNTs) can be easily removed. This discovery should enable the continued consideration of SWNTs for advanced nanoelectronics manufacturing, as this material shows promise for continuing the benefits of scaling with significantly reduced risk to the environment. In addition to semiconductor manufacturers, several other industries also could gain greater product effectiveness from this research.

Research Helps Ensure Clean Integrated Circuit Manufacturing

Research Triangle Park, NC | Posted on June 20th, 2011

The research team analyzed the potential risk of a variety of functionalized SWNTs, and found that one family of nanotubes, carboxylated single-walled carbon nanotubes (CSWNTs), reduced the ability of mammalian cells to grow in culture. This is considered to be evidence of toxicity. However, researchers also found that standard separation techniques could remove the contaminating material, indicating that the purified nanotubes themselves were not responsible for the observed toxicity. The data suggests that specific organic impurities present in the CSWNTs may be responsible for much of the concern associated with this material, and further work is in progress to test this idea.

"The process for removing the toxic material from the CSWNTs is relatively easy, and could be applied to this type of common SWNT if it's to be used in a semiconductor manufacturing facility," said Rockford Draper, Professor, Departments of Molecular & Biology and Chemistry at the University of Texas at Dallas. "These insights could affect the way companies purchase and use certain SWNTs."

SRC's Center for Environmentally Benign Semiconductor Manufacturing supports a major effort to understand, assess and screen emerging materials for their potential impact on human health, safety and the environment—well before they are considered for the manufacturing of integrated circuits.

"In the International Technology Roadmap for Semiconductors, SWNTs are positioned as emerging research materials with several potential application opportunities. As this technology continues to evolve, SWNTs may help to enable the extensible manufacturability of scaled integrated circuits into the deep nanometer regime," said Dan Herr, SRC Director of Nanomanufacturing Sciences. "Our Center for Environmentally Benign Semiconductor Manufacturing focuses on developing high performance green materials and processes, with minimal environmental safety and health impact. It is developing tools for rapidly screening new candidate materials for their hazard and manufacturing potential, early in their research life cycle."

In the UT Dallas research, the data suggests that small carbon fragments generated during the CSWNT production process may be the cause of observed toxicity, which is distinct from SWNTs. The presence of small oxidized carbon fragments in CSWNTs has been previously reported by industry researchers, but this is the first data to suggest it could be toxic.

The research is directed by SRC through the Center for Environmentally Benign Semiconductor Manufacturing, which anticipates and addresses future industry needs, with additional funding by the National Institute of Environmental Health Sciences.

For more information and details about the research, see the forthcoming manuscript entitled "Cytotoxicity Screening of Single-Walled Carbon Nanotubes: Detection and Removal of Cytotoxic Contaminants from Carboxylated Carbon Nanotubes" by Wang et al, that has been recommended for publication in Molecular Pharmaceutics.

####

About Semiconductor Research Corporation (SRC)
Celebrating 29 years of collaborative research for the semiconductor industry, SRC defines industry needs, invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America’s highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry.

For more information, please click here

Copyright © Semiconductor Research Corporation (SRC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Chip Technology

Basque researchers turn light upside down February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Environment

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Alliances/Trade associations/Partnerships/Distributorships

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Research partnerships

Basque researchers turn light upside down February 23rd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project