Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Mimicking nature at the nanoscale: Selective transport across a biomimetic nanopore

Abstract:
Researchers at Delft University of Technology and the University of Basel have established a biomimetic nanopore that provides a unique test and measurement platform for the way that proteins move into a cell's nucleus. In the journal Nature Nanotechnology (June 19 - online), they report an artificial nanopore that is functionalized with key proteins which mimicks the natural nuclear pore. Upon testing the transport of individual proteins through the biomimetic pore, they found that most proteins cannot move through, but some specific ones can indeed pass. This is the hallmark of the intriguing selectivity that is also found in natural pores. The biomimetic pore is fully functional and can be used as a testing platform for studies of drug delivery into a cell's nucleus.

Mimicking nature at the nanoscale: Selective transport across a biomimetic nanopore

The Netherlands | Posted on June 20th, 2011

The nuclear pore complex

"Human cells have a nucleus, and proteins and RNA need to get in and out. This is regulated by small holes, called nuclear pore complexes. These are essential biological pores that act as gatekeepers of the cell nucleus. They transport proteins and RNA in and out of the nucleus in a highly selective manner, which means that some go through but others are blocked from passing. There is much debate on how this intriguing selectivity is achieved. Given the fact that it is very difficult to perform high-resolution measurements in the complex environment of the living cell, the exact mechanism is hard to resolve." Professor Cees Dekker, director of the Kavli Institute of Nanoscience at Delft and leader of this research, explains. In the new research by Dekker's group in collaboration with the group of dr. Roderick Lim of the University of Basel, they were able to make a biomimetic nanopore - a synthetic pore that imitates the nuclear pore - which acts as a new, powerful platform to monitor transport of individual proteins across.

Biomimetic nanopore

Dekker: "One promising approach to study this nuclear transport is biomimetics - the development of synthetic systems that imitate biological structures and processes. Advances in nanotechnology now make it possible to study and shape matter at the nanometer scale, opening the way to imitate biological structures at the molecular level to both study and harness their ingenuity." The group of dr. Roderick Lim at the University of Basel purified the nuclear pore proteins and Dekkers group made the biomimetic nanopores of these by attaching these proteins to small holes in a solid-state support.

Selectivity

The new research, performed chiefly by lead author Stefan Kowalczyk, a graduate student in Dekkers lab, demonstrates that it is possible to establish a biomimetic nuclear pore and to monitor transport of individual proteins across the pore. Importantly, the biomimetic pore exhibits strong selectivity, just like the natural nuclear pore complex: ImpB proteins do pass the pores, whereas BSA proteins do not (as illustrated by the attached image). A differing degree of selectivity was found, depending on which exact nuclear pore proteins were used to functionalize the pore. The researchers have shown that the biomimetic pore is fully functional and can be used as a testing platform for studies of drug delivery into a cell's nucleus.

####

For more information, please click here

Contacts:
Prof. Cees Dekker

Copyright © Delft University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Discoveries

ANU invention to inspire new night-vision specs December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Announcements

ANU invention to inspire new night-vision specs December 7th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project