Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Self-assembling Electronic Nano-components

“Self-organization” of nano-devices: Magnetic molecules (green) arrange on a carbon nanotube (black) to build an electronic component (Photo: C. Grupe, KIT).
“Self-organization” of nano-devices: Magnetic molecules (green) arrange on a carbon nanotube (black) to build an electronic component (Photo: C. Grupe, KIT).

Abstract:
The July Issue of Nature Materials Describes the Function of an Innovative Tiny Component Developed by Researchers of KIT's Institute of Nanotechnology Together with a Team of European Scientists.

Self-assembling Electronic Nano-components

Grenoble, France and Strasbourg, Germany | Posted on June 20th, 2011

Magnetic storage media such as hard drives have revolutionized the handling of information: We are used to dealing with huge quantities of magnetically stored data while relying on highly sensitive electronic components. And hope to further increase data capacities through ever smaller components. Together with experts from Grenoble and Strasbourg, researchers of KIT's Institute of Nanotechnology (INT) have developed a nano-component based on a mechanism observed in nature.

What if the very tininess of a component prevented one from designing the necessary tools for its manufacture? One possibility could be to "teach" the individual parts to self-assemble into the desired product. For fabrication of an electronic nano-device, a team of INT researchers headed by Mario Ruben adopted a trick from nature: Synthetic adhesives were applied to magnetic molecules in such a way that the latter docked on to the proper positions on a nanotube without any intervention. In nature, green leaves grow through a similar self-organizing process without any impetus from subordinate mechanisms. The adoption of such principles to the manufacture of electronic components is a paradigm shift, a novelty.

The nano-switch was developed by a European team of scientists from Centre National de la Recherche Scientifique (CNRS) in Grenoble, Institut de Physique et Chimie des Matériaux at the University of Strasbourg, and KIT's INT. It is one of the invention's particular features that, unlike the conventional electronic components, the new component does not consist of materials such as metals, alloys or oxides but entirely of soft materials such as carbon nanotubes and molecules.

Terbium, the only magnetic metal atom that is used in the device, is embedded in organic material. Terbium reacts highly sensitively to external magnetic fields. Information as to how this atom aligns along such magnetic fields is efficiently passed on to the current flowing through the nanotube. The Grenoble CNRS research group headed by Dr. Wolfgang Wernsdorfer succeeded in electrically reading out the magnetism in the environment of the nano-component. The demonstrated possibility of addressing electrically single magnetic molecules opens a completely new world to spintronics, where memory, logic and possibly quantum logic may be integrated.

The function of the spintronic nano-device is described in the July issue of Nature Materials (DOI number: 10.1038/Nmat3050)for low temperatures of approximately one degree Kelvin, which is -272 degrees Celsius. Efforts are taken by the team of researchers to further increase the component's working temperature in the near future.

####

About Karlsruhe Institute of Technology (KIT)
Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

For more information, please click here

Contacts:
Tu-Mai Pham-Huu
PKM, Internetredaktion
Phone: +49 721 608-48751
Fax: +49 721 608-45681

Copyright © Karlsruhe Institute of Technology (KIT)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Spintronics

On the road to spin-orbitronics: Berkeley Lab researchers find new way to manipulate magnetic domain walls April 13th, 2015

Graphene looking promising for future spintronic devices April 10th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

Memory Technology

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Computers that mimic the function of the brain: A new step forward in memristor technology could bring us closer to brain-like computing April 6th, 2015

Mind the gap: Nanoscale speed bump could regulate plasmons for high-speed data flow April 1st, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Self Assembly

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

In situ production of biofunctionalised few-layer defect-free microsheets of graphene April 7th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Quantum Computing

NIST tightens the bounds on the quantum information 'speed limit' April 13th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

OU physicists first to create new molecule with record-setting dipole moment April 4th, 2015

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

Nanoelectronics

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Solution-grown nanowires make the best lasers April 14th, 2015

Water makes wires even more nano: Rice University lab extends meniscus-mask process to make sub-10 nanometer paths April 6th, 2015

Demonstration of 50GHz Ge Waveguide Electro-Absorption Modulator April 2nd, 2015

Discoveries

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Announcements

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Research partnerships

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE