Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Compact Microspectrometer Design Achieves High Resolution & Wide Bandwidth

Georgia Tech/Zhixuan Xia

Micrograph of the microspectrometer developed Ali Adibi, a professor in the School of Electrical and Computer Engineering at Georgia Tech. The intstrument achieved 0.6-nanometer resolution over a spectral range of more than 50 nanometers with a footprint less than one square millimeter.
Georgia Tech/Zhixuan Xia
Micrograph of the microspectrometer developed Ali Adibi, a professor in the School of Electrical and Computer Engineering at Georgia Tech. The intstrument achieved 0.6-nanometer resolution over a spectral range of more than 50 nanometers with a footprint less than one square millimeter.

Abstract:
A new microspectrometer architecture that uses compact disc-shaped resonators could address the challenges of integrated lab-on-chip sensing systems that now require a large off-chip spectrometer to achieve high resolution.

New Compact Microspectrometer Design Achieves High Resolution & Wide Bandwidth

Atlanta, GA | Posted on June 20th, 2011

Spectrometers have conventionally been expensive and bulky bench-top instruments used to detect and identify the molecules inside a sample by shining light on it and measuring different wavelengths of the emitted or absorbed light. Previous efforts toward miniaturizing spectrometers have reduced their size and cost, but these reductions have typically resulted in lower-resolution instruments.

"For spectrometers, it is better to be small and cheap than big and bulky -- provided that the optical performance targets are met," said Ali Adibi, a professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. "We were able to achieve high resolution and wide bandwidth with a compact single-mode on-chip spectrometer through the use of an array of microdonut resonators, each with an outer radius of two microns."

The 81-channel on-chip spectrometer designed by Georgia Tech engineers achieved 0.6-nanometer resolution over a spectral range of more than 50 nanometers with a footprint less than one square millimeter. The simple instrument -- with its ultra-small footprint -- can be integrated with other devices, including sensors, optoelectronics, microelectronics and microfluidic channels for use in biological, chemical, medical and pharmaceutical applications.

The microspectrometer architecture was described in a paper published in the June 20 issue of the journal Optics Express. The research was supported by the Air Force Office of Scientific Research and the Defense Advanced Research Projects Agency.

"This architecture is promising because the quality-factor of the microdonut resonators is higher than that of microrings of the same size," said Richard Soref, a research scientist in the U.S. Air Force Research Laboratory at Hanscom Air Force Base who was not directly involved in the research. "Having such small resonators is also an advantage because they can be densely packed on a chip, enabling a large spectrum to be sampled."

Adibi's group is currently developing the next generation of these spectrometers, which are being designed to contain up to 1000 resonators and achieve 0.15-nanometer resolution with a spectral range of 150 nanometers and footprint of 200 micrometers squared.

Adibi, current graduate student Zhixuan Xia and research engineer Ali A. Eftekhar, and former research engineers Babak Momeni and Siva Yegnanarayanan designed and implemented the microspectrometer using CMOS-compatible fabrication processes. The key building element they used to construct the device was an array of miniaturized microdonut resonators, which were essentially microdiscs perforated in their centers. This research built on former Georgia Tech graduate student Mohammad Soltani's work to develop miniature microresonators, which was published in the Sept. 13, 2010 issue of the journal Optics Express.

The researchers adjusted the resonance wavelengths of different microdonut resonators by engineering their geometry. While the resonance was very sensitive to variations in the outer radius, fine-tuning could be achieved by adjusting the inner radius. The microdonut resonators were carefully designed so that each of the resonators only tapped a small portion of the incoming spectrum, thus enabling measurement of the entire spectrum of desired wavelengths in real time.

A key advantage of this microspectrometer design, according to the researchers, is the ability to independently control and configure the resolution and operating bandwidth of each channel for different applications. The device can cover a wide range of wavelengths from approximately one to three micrometers. Extending this concept to the silicon nitride platform also enables spectrometers for visible light applications.

"The microspectrometer we designed may allow individuals to replace the big, bulky, high- resolution spectrometers with a large bandwidth they are currently using with an on-chip spectrometer the size of a penny," noted Adibi. "Our device has the potential to be a high-resolution, lightweight, compact, high-speed and versatile microspectrometer with a large dynamic range that can be used for many applications."

Current graduate students Qing Li and Maysamreza Chamanzar also contributed to this work.

This research was supported by the Defense Advanced Research Projects Agency (DARPA) (Award No. HR 0011-10-1-0075) and the Air Force Office of Scientific Research (AFOSR) (Award No. FA9550-06-01-2003). The content is solely the responsibility of the principal investigator and does not necessarily represent the official views of DARPA or AFOSR.

Writer: Abby Robinson

####

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA

Media Relations Contacts:
Abby Robinson

404-385-3364
or
John Toon

404-894-6986

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Lab-on-a-chip

IBM Lab-on-a-Chip Breakthrough Aims to Help Physicians Detect Cancer and Diseases at the Nanoscale: IBM scientists will collaborate with the Icahn School of Medicine at Mt. Sinai to test on prostate cancer August 1st, 2016

POSTECH researchers develop a control algorithm for more accurate lab-on-a-chip devices April 6th, 2016

Artificial molecules April 3rd, 2016

New microwave imaging approach opens a nanoscale view on processes in liquids: Technique can explore technologically and medically important processes that occur at boundaries between liquids and solids, such as in batteries or along cell membranes March 16th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic