Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tracking water pollutants

Chin-Pao Huang is principal investigator on a project to investigate engineered nanoparticles in ground wastewater. Photo by Kevin Quinlan.
Chin-Pao Huang is principal investigator on a project to investigate engineered nanoparticles in ground wastewater. Photo by Kevin Quinlan.

Abstract:
Study evaluates engineered nanoparticles in wastewater

by Karen B. Roberts

Tracking water pollutants

Newark, DE | Posted on June 19th, 2011

Have you ever wondered what happens to sunscreen after it swirls down the drain with your soap?

Probably not, but it is a question that makes Prof. Chin-Pao Huang curious. Sunscreen contains titanium dioxide, an engineered nanoparticle (ENP) that improves the product's performance, reducing your sunburn risk while outdoors.

But if titanium dioxide doesn't dissolve, where does it go once you wash it off?

Huang, Donald C. Phillips Professor of Civil and Environmental Engineering at the University of Delaware, is principal investigator (PI) of a new grant exploring whether ENP are present in ground wastewater. Murray Johnston, professor in the Department of Chemistry and Biochemistry, serves as co-PI on the project.

By definition, nanomaterials are materials 1-100 nanometers in length -- one thousand times smaller than a human hair. ENP are synthetic materials created in a laboratory. Invisible to the naked eye, they possess unique properties that are increasingly used in cosmetics, pharmaceuticals, electronics and appliances.

The same properties that make ENP attractive, however, also have drawbacks. According to Huang, increased nanomaterial use will ultimately result in their escape into the environment, namely the atmosphere, soil and water. Municipal and industrial wastewater is expected to be the major transport route for ENP due to the way these ENP are being used by consumers.

"There is a lot we don't know yet about the ENP lifecycle, including how nanomaterials present in our environment affect organisms, water and the ecosystem," says Huang. Their small size makes detecting and isolating ENP technically challenging, he adds.

Funded by a three year $599,000 STAR grant from the U.S. Environmental Protection Agency (EPA), Huang's group is focusing on the fate, transport and behavior of four main engineered nanomaterials:

* Titanium dioxide (found in sunblock and food additives)
* Zinc oxide (found in cosmetics and food)
* Carbon nanotubes (increasingly used in medicines and printer ink)
* Silver (used in refrigerators and disinfecting products)

"Knowing what happens to the particles will allow scientists to focus on making them safer for the environment," explains Huang.

The UD research team is using a new experimental technique to collect and characterize wastewater and sludge samples from four major municipal wastewater treatment plants in Philadelphia, Baltimore, Washington, D.C., and Wilmington. The technique involves using electrically assisted tangential flow (EATF) membrane filtration and electrospray aerosol analysis (EAA), coupled with a nano aerosol mass spectrometer (NAMS), to trace and quantify which nanomaterials remain in the system and where they end up.

The results will assist wastewater process design engineers in developing new treatment processes to eliminate solids such as titanium dioxide from wastewater and prevent it from leeching into the environment where its effects, as yet, are unknown. It will also help public and private sector decision makers in revising wastewater treatment quality standards.

"This is the only research study worldwide being carried out at such a large and comprehensive scale," says Huang. He believes a concerted effort is needed not just locally, but globally as well. To that end, Huang plans to initiate similar research programs with scientists from partner institutions in Taiwan, Korea and China.

Research will be conducted in the Aquatic Environmental Engineering Laboratory in UD's Department of Civil and Environmental Engineering and the Aerosol Chemistry Laboratory in the Department of Chemistry and Biochemistry.

About the researchers

Chin-Pao Huang is one of the most highly respected aquatic chemists worldwide. He has more than 40 years of research experience in aquatic chemistry and physical-chemical processes for water and wastewater treatment. His expertise includes transport of heavy metals in municipal wastewater treatment plants, speciation of lead in groundwater and interactions between nanoparticles and aquatic organisms.

Murray Johnston's career includes more than 20 years of research experience as a leader in the development and use of aerosol mass spectrometry to study the source and transformation of particulate matter. His current work emphasizes the detection and characterization of nanoparticles in ambient air, especially the urban environment.


####

For more information, please click here

Contacts:
News Media Contact
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project