Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCLA team reports scalable fabrication of self-aligned graphene transistors, circuits

Self-aligned graphene transistor array
Self-aligned graphene transistor array

Abstract:
Researchers report that they have developed a scalable approach to fabricating high-speed graphene transistors.

By Mike Rodewald

UCLA team reports scalable fabrication of self-aligned graphene transistors, circuits

Los Angeles, CA | Posted on June 19th, 2011

Graphene, a one-atom-thick layer of graphitic carbon, has the potential to make consumer electronic devices faster and smaller. But its unique properties, and the shrinking scale of electronics, also make graphene difficult to fabricate and to produce on a large scale.

In September 2010, a UCLA research team reported that they had overcome some of these difficulties and were able to fabricate graphene transistors with unparalleled speed. These transistors used a nanowire as the self-aligned gate — the element that switches the transistor between various states. But the scalability of this approach remained an open question.

Now the researchers, using equipment from the Nanoelectronics Research Facility and the Center for High Frequency Electronics at UCLA, report that they have developed a scalable approach to fabricating these high-speed graphene transistors.

The team used a dielectrophoresis assembly approach to precisely place nanowire gate arrays on large-area chemical vapor deposition-growth graphene — as opposed to mechanically peeled graphene flakes — to enable the rational fabrication of high-speed transistor arrays. They were able to do this on a glass substrate, minimizing parasitic delay and enabling graphene transistors with extrinsic cut-off frequencies exceeding 50 GHz. Typical high-speed graphene transistors are fabricated on silicon or semi-insulating silicon carbide substrates that tend to bleed off electric charge, leading to extrinsic cut-off frequencies of around 10 GHz or less.

Taking an additional step, the UCLA team was able to use these graphene transistors to construct radio-frequency circuits functioning up to 10 GHz, a substantial improvement from previous reports of 20 MHz.

IMPACT:
The research opens a rational pathway to scalable fabrication of high-speed, self-aligned graphene transistors and functional circuits and it demonstrates for the first time a graphene transistor with a practical (extrinsic) cutoff frequency beyond 50 GHz.

This represents a significant advance toward graphene-based, radio-frequency circuits that could be used in a variety of devices, including radios, computers and mobile phones. The technology might also be used in wireless communication, imaging and radar technologies.

AUTHORS:
The UCLA research team included Xiangfeng Duan, professor of chemistry and biochemistry; Yu Huang, assistant professor of materials science and engineering at the Henry Samueli School of Engineering and Applied Science; Lei Liao; Jingwei Bai; Rui Cheng; Hailong Zhou; Lixin Liu; and Yuan Liu.

Duan and Huang are also researchers at the California NanoSystems Institute at UCLA.

FUNDING:
The work was funded by grants from National Science Foundation and the National Institutes of Health.

JOURNAL:
The research was recently published in the peer-reviewed journal Nano Letters and is available online at bit.ly/iSDhNC.

####

For more information, please click here

Contacts:
Media Contacts
Jennifer Marcus,
310-267-4839

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Graphene

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Stretching the limits on conducting wires July 25th, 2015

More efficient process to produce graphene developed by Ben-Gurion University researchers July 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Take a trip through the brain July 30th, 2015

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project