Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCLA team reports scalable fabrication of self-aligned graphene transistors, circuits

Self-aligned graphene transistor array
Self-aligned graphene transistor array

Abstract:
Researchers report that they have developed a scalable approach to fabricating high-speed graphene transistors.

By Mike Rodewald

UCLA team reports scalable fabrication of self-aligned graphene transistors, circuits

Los Angeles, CA | Posted on June 19th, 2011

Graphene, a one-atom-thick layer of graphitic carbon, has the potential to make consumer electronic devices faster and smaller. But its unique properties, and the shrinking scale of electronics, also make graphene difficult to fabricate and to produce on a large scale.

In September 2010, a UCLA research team reported that they had overcome some of these difficulties and were able to fabricate graphene transistors with unparalleled speed. These transistors used a nanowire as the self-aligned gate the element that switches the transistor between various states. But the scalability of this approach remained an open question.

Now the researchers, using equipment from the Nanoelectronics Research Facility and the Center for High Frequency Electronics at UCLA, report that they have developed a scalable approach to fabricating these high-speed graphene transistors.

The team used a dielectrophoresis assembly approach to precisely place nanowire gate arrays on large-area chemical vapor deposition-growth graphene as opposed to mechanically peeled graphene flakes to enable the rational fabrication of high-speed transistor arrays. They were able to do this on a glass substrate, minimizing parasitic delay and enabling graphene transistors with extrinsic cut-off frequencies exceeding 50 GHz. Typical high-speed graphene transistors are fabricated on silicon or semi-insulating silicon carbide substrates that tend to bleed off electric charge, leading to extrinsic cut-off frequencies of around 10 GHz or less.

Taking an additional step, the UCLA team was able to use these graphene transistors to construct radio-frequency circuits functioning up to 10 GHz, a substantial improvement from previous reports of 20 MHz.

IMPACT:
The research opens a rational pathway to scalable fabrication of high-speed, self-aligned graphene transistors and functional circuits and it demonstrates for the first time a graphene transistor with a practical (extrinsic) cutoff frequency beyond 50 GHz.

This represents a significant advance toward graphene-based, radio-frequency circuits that could be used in a variety of devices, including radios, computers and mobile phones. The technology might also be used in wireless communication, imaging and radar technologies.

AUTHORS:
The UCLA research team included Xiangfeng Duan, professor of chemistry and biochemistry; Yu Huang, assistant professor of materials science and engineering at the Henry Samueli School of Engineering and Applied Science; Lei Liao; Jingwei Bai; Rui Cheng; Hailong Zhou; Lixin Liu; and Yuan Liu.

Duan and Huang are also researchers at the California NanoSystems Institute at UCLA.

FUNDING:
The work was funded by grants from National Science Foundation and the National Institutes of Health.

JOURNAL:
The research was recently published in the peer-reviewed journal Nano Letters and is available online at bit.ly/iSDhNC.

####

For more information, please click here

Contacts:
Media Contacts
Jennifer Marcus,
310-267-4839

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Graphene

Successful boron-doping of graphene nanoribbon August 27th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Graphene oxide's secret properties revealed at atomic level: A research team found that graphene oxide's inherent defects give rise to a surprising mechanical property August 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Academic/Education

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Nanoelectronics

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

Small tilt in magnets makes them viable memory chips August 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic