Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stretchable electronics report how you feel

Abstract:
Electronics that can be bent and stretched might sound like science fiction. But Uppsala researcher Zhigang Wu, working with collaborators, has devised a wireless sensor that can stand to be stretched. For example, the sensor can measure intensive body movements and wirelessly send information directly to a computer. The findings are now being presented in the journal Advanced Functional Materials.

by Linda Koffmar

Stretchable electronics report how you feel

Uppsala, Sweden | Posted on June 17th, 2011

Robots of liquid metal, as in the Terminator movies, are probably the best-known cases of deformable electronic systems. But so far this only exists in our imagination. Twisting, folding, and stretching fragile conventional electronics is not yet possible.

The latest advances in the field of µFSRFE (microfluidic stretchable radio frequency electronics) have shown the possibility of combining established stiff electronics components with channels of elastomers filled with fluid metal. In this way it has been possible to construct systems that after severe mechanical deformation can manage to return to their original form. Such electronics can adapt to nearly any bent and moving surfaces on a human being or a robot and can thus serve as a second layer of smart e-skin for health monitoring or remote control.

The researcher Zhigang Wu from Uppsala University, in collaboration with researchers at the company Laird Technologies, has presented a newly developed and wireless µFSRFE sensor consisting of a multifunctional antenna integrated with a conventional rigid circuit board. The reporting sensor can measure intensive body movements and wirelessly send information directly to a computer. The design enables wireless measurement of repeated bending across a large area or moveable parts.

The sensor they designed will pave the way for myriad new applications that until now have only been seen on the movie screen.

For more information, please contact Zhigang Wu, mobile: 046 (0)72-209 19 96, phone: +46 (0)18-471 1086,

"A Microfluidic, Reversibly Stretchable, Large-Area Wireless Strain Sensor", Shi Cheng and Zhigang Wu, Advanced functional materials, DOI: 10.1002/adfm.201002508

####

For more information, please click here

Contacts:
Uppsala University
P.O. Box 256
SE-751 05 Uppsala, SWEDEN
Phone: +46 18 471 00 00
Fax: +46 18 471 20 00

Copyright © Uppsala University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Possible Futures

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Sensors

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Measuring the nanoworld September 4th, 2018

Research partnerships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project