Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stretchable electronics report how you feel

Abstract:
Electronics that can be bent and stretched might sound like science fiction. But Uppsala researcher Zhigang Wu, working with collaborators, has devised a wireless sensor that can stand to be stretched. For example, the sensor can measure intensive body movements and wirelessly send information directly to a computer. The findings are now being presented in the journal Advanced Functional Materials.

by Linda Koffmar

Stretchable electronics report how you feel

Uppsala, Sweden | Posted on June 17th, 2011

Robots of liquid metal, as in the Terminator movies, are probably the best-known cases of deformable electronic systems. But so far this only exists in our imagination. Twisting, folding, and stretching fragile conventional electronics is not yet possible.

The latest advances in the field of µFSRFE (microfluidic stretchable radio frequency electronics) have shown the possibility of combining established stiff electronics components with channels of elastomers filled with fluid metal. In this way it has been possible to construct systems that after severe mechanical deformation can manage to return to their original form. Such electronics can adapt to nearly any bent and moving surfaces on a human being or a robot and can thus serve as a second layer of smart e-skin for health monitoring or remote control.

The researcher Zhigang Wu from Uppsala University, in collaboration with researchers at the company Laird Technologies, has presented a newly developed and wireless µFSRFE sensor consisting of a multifunctional antenna integrated with a conventional rigid circuit board. The reporting sensor can measure intensive body movements and wirelessly send information directly to a computer. The design enables wireless measurement of repeated bending across a large area or moveable parts.

The sensor they designed will pave the way for myriad new applications that until now have only been seen on the movie screen.

For more information, please contact Zhigang Wu, mobile: 046 (0)72-209 19 96, phone: +46 (0)18-471 1086,

"A Microfluidic, Reversibly Stretchable, Large-Area Wireless Strain Sensor", Shi Cheng and Zhigang Wu, Advanced functional materials, DOI: 10.1002/adfm.201002508

####

For more information, please click here

Contacts:
Uppsala University
P.O. Box 256
SE-751 05 Uppsala, SWEDEN
Phone: +46 18 471 00 00
Fax: +46 18 471 20 00

Copyright © Uppsala University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Possible Futures

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Sensors

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Research partnerships

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project