Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Space suit safety

Work by Kate Gurnon could improve space suit safety for NASA astronauts
Work by Kate Gurnon could improve space suit safety for NASA astronauts

Abstract:
Kate Gurnon, a doctoral student in the Department of Chemical Engineering at the University of Delaware, will spend the next year studying materials that show promise to improve MMOD resistance in the next generation space suits as a NASA Delaware Space Grant Fellow.

by Annie Marshall

Space suit safety

Newark, DE | Posted on June 16th, 2011

Astronauts are exposed to many dangers in space, particularly debris encountered while working outside the aircraft.

Micrometeoroid orbital debris (MMOD) are sub-centimeter sized particles that can travel up to 19 kilometers per second and have the potential to penetrate space suits, placing astronauts at risk and sometimes forcing them to abort their mission.

Kate Gurnon, a doctoral student in the Department of Chemical Engineering at the University of Delaware, will spend the next year studying materials that show promise to improve MMOD resistance in the next generation space suits as a NASA Delaware Space Grant Fellow.

The one-year, $26,000 grant will fund Gurnon's research on Shear Thickening Fluids (STFs), a novel nanotechnology with the potential to make nanoparticles in a carrier fluid become stiff and dissipate energy, creating a protective layer on select materials. When incorporated into ballistic textiles, such as Kevlar, STF nanocomposites demonstrate increased ballistic protection and puncture resistance.

Gurnon is advised by Norman J. Wagner, Alvin B. and Julia O. Stiles Professor of Chemical Engineering and department chair, and John W. (Jack) Gillespie, Jr., Donald C. Phillips Professor and director of UD's Center for Composite Materials. Her research focuses on a new approach to dynamic materials testing, Large Amplitude Oscillatory Shear (LAOS), which will enable her to develop rheological equations that describe the stress state of STFs under dynamic loading.

"Nanocomposite material performance research is a complicated, yet crucial element in engineering STFs for spacesuit applications," explains Wagner. "Kate must consider not only impact loads and deformation fields, but also how STF composition and microstructure will perform in space."

If successful, her work could lead to more durable, penetration resistant materials for space suits. Gurnon says she hopes the fellowship will also help her become a scientific leader in nanomaterial design and applications, and a role model for future female engineers.

"By disseminating knowledge of the potential advantages of STF technology to a broad audience, I have the opportunity to influence other young women, like myself, to pursue a career in science and technology," she says.

Gurnon is a member of Tau Beta Pi, the national engineering honors society.

The University of Delaware is a Land Grant, Sea Grant and Space Grant institution. Grants are offered to each of these distinct research areas to foster the growth of information by promoting education and providing funds for researchers.

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leaderís researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Materials/Metamaterials

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Aerospace/Space

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE