Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Penn Researchers Break Light-Matter Coupling Strength Limit in Nanoscale Semiconductors

A computer simulation of a one-dimensional cavity wave in a 200nm nanowire
A computer simulation of a one-dimensional cavity wave in a 200nm nanowire

Abstract:
New engineering research at the University of Pennsylvania demonstrates that polaritons have increased coupling strength when confined to nanoscale semiconductors. This represents a promising advance in the field of photonics: smaller and faster circuits that use light rather than electricity.

Penn Researchers Break Light-Matter Coupling Strength Limit in Nanoscale Semiconductors

Philadelphia, PA | Posted on June 16th, 2011

The research was conducted by assistant professor Ritesh Agarwal, postdoctoral fellow Lambert van Vugt and graduate student Brian Piccione of the Department of Materials Science and Engineering in Penn's School of Engineering and Applied Science. Chang-Hee Cho and Pavan Nukala, also of the Materials Science department, contributed to the study.

Their work was published in the journal Proceedings of the National Academy of Sciences.

Polaritons are quasiparticles, combinations of physical particles and the energy they contribute to a system that can be measured and tracked as a single unit. Polaritons are combinations of photons and another quasiparticle, excitons. Together, they have qualities of both light and electric charge, without being fully either.

"An exciton is a combination of a an electron, which has negative charge and an electron hole, which has a positive charge. Light is an oscillating electro-magnetic field, so it can couple with the excitons," Agarwal said. "When their frequencies match, they can talk to one another; both of their oscillations become more pronounced."

High light-matter coupling strength is a key factor in designing photonic devices, which would use light instead of electricity and thus be faster and use less power than comparable electronic devices. However, the coupling strength exhibited within bulk semiconductors had always been thought of as a fixed property of the material they were made of.

Agarwal's team proved that, with the proper fabrication and finishing techniques, this limit can be broken.

"When you go from bulk sizes to one micron, the light-matter coupling strength is pretty constant," Agarwal said. "But, if you try to go below 500 nanometers or so, what we have shown is that this coupling strength increases dramatically."

The difference is a function of one of nanotechnology's principle phenomena: the traits of a bulk material are different than structures of the same material on the nanoscale.

"When you're working at bigger sizes, the surface is not as important. The surface to volume ratio — the number of atoms on the surface divided by the number of atoms in the whole material — is a very small number," Agarwal said. "But when you make a very small structure, say 100 nanometers, this number is dramatically increased. Then what is happening on the surface critically determines the device's properties."

Other researchers have tried to make polariton cavities on this small a scale, but the chemical etching method used to fabricate the devices damages the semiconductor surface. The defects on the surface trap the excitons and render them useless.

"Our cadmium sulfide nanowires are self-assembled; we don't etch them. But the surface quality was still a limiting factor, so we developed techniques of surface passivation. We grew a silicon oxide shell on the surface of the wires and greatly improved their optical properties," Agarwal said.

The oxide shell fills the electrical gaps in the nanowire surface, preventing the excitons from getting trapped.

"We also developed tools and techniques for measuring this light-matter coupling strength," Piccione said. "We've quantified the light-matter coupling strength, so we can show that it's enhanced in the smaller structures,"

Being able to quantify this increased coupling strength opens the door for designing nanophotonic circuit elements and devices.

"The stronger you can make light-matter coupling, the better you can make photonic switches," Agarwal said. "Electrical transistors work because electrons care what other electrons are doing, but, on their own, photons do not interact with each other. You need to combine optical properties with material properties to make it work"

This research was supported by the Netherlands Organization for Scientific Research Rubicon Programme, the U.S. Army Research Office, the National Science Foundation, Penn's Nano/Bio Interface Center and the National Institutes of Health.

####

For more information, please click here

Contacts:
Media Contact:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Possible Futures

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Academic/Education

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Self Assembly

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanoelectronics

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN December 22nd, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Discoveries

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Photonics/Optics/Lasers

Researchers use sound waves to advance optical communication January 22nd, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project