Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Healing times for dental implants could be cut

Johanna Löberg at the University of Gothenburg’s Department of Chemistry
Johanna Löberg at the University of Gothenburg’s Department of Chemistry

Abstract:
The technology used to replace lost teeth with titanium dental implants could be improved. By studying the surface structure of dental implants not only at micro level but also at nano level, researchers at the University of Gothenburg; Sweden, have come up with a method that could shorten the healing time for patients.

Healing times for dental implants could be cut

Gothenburg, Sweden | Posted on June 15th, 2011

"Increasing the active surface at nano level and changing the conductivity of the implant allows us to affect the body's own biomechanics and speed up the healing of the implant," says Johanna Löberg at the University of Gothenburg's Department of Chemistry. "This would reduce the discomfort for patients and makes for a better quality of life during the healing process."

Dental implants have been used to replace lost teeth for more than 40 years now. Per-Ingvar Brĺnemark, who was recently awarded the prestigious European Inventor Award, was the first person to realise that titanium was very body-friendly and could be implanted into bone without being rejected. Titanium is covered with a thin layer of naturally formed oxide and it is this oxide's properties that determine how well an implant fuses with the bone.

It became clear at an early point that a rough surface was better than a smooth one, and the surface of today's implants is often characterised by different levels of roughness, from the thread to the superimposed nanostructures. Anchoring the implant in the bone exerts a mechanical influence on the bone tissue known as biomechanical stimulation, and this facilitates the formation of new bone. As the topography (roughness) of the surface is important for the formation of new bone, it is essential to be able to measure and describe the surface appearance in detail. But roughness is not the only property that affects healing.

Johanna Löberg has come up with a method that describes the implant's topography from micrometre to nanometre scale and allows theoretical estimations of anchoring in the bone by different surface topographies. The method can be used in the development of new dental implants to optimise the properties for increased bone formation and healing. She has also studied the oxide's conductivity, and the results show that a slightly higher conductivity results in a better cell response and earlier deposition of minerals that are important for bone formation.

The results are in line with animal studies and clinical trials of the commercial implant OsseoSpeedÓ (Astra Tech AB), which show a slightly higher conductivity for the oxide and also an exchange between hydroxide and fluoride on the surface of the oxide. Surfaces with a well-defined nanostructure have a larger active area and respond quickly to the deposition of bone-forming minerals.

The project is a collaboration between the University of Gothenburg and Astra Tech AB in Mölndal, and will be further evaluated in follow-up studies.

The thesis Integrated Biomechanical, Electronic and Topographic Characterization of Titanium Dental Implants was successfully defended at the University of Gothenburg.

####

For more information, please click here

Contacts:
Helena Aaberg
+46 31 786 5152

Copyright © University of Gothenburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Nanomedicine

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Discoveries

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Dental

Strong teeth: Nanostructures under stress make teeth crack resistant June 10th, 2015

Deben reports on the research of Dr Sunita Ho from UCSF using a CCT500 tensile stage to study the behaviour of dental materials April 14th, 2015

A novel way to apply drugs to dental plaque Nanoparticles release drugs to reduce tooth decay April 1st, 2015

Graphene reduces wear of alumina ceramic March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project