Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Glowing Cornell Dots – a Potential Cancer Diagnostic Tool Set for Human Trials

Abstract:
The U.S. Food and Drug Administration (FDA) has approved the first clinical trial in humans of a new technology: Cornell Dots, brightly glowing nanoparticles that can light up cancer cells in PET-optical imaging.

Glowing Cornell Dots – a Potential Cancer Diagnostic Tool Set for Human Trials

Ithaca, NY | Posted on June 13th, 2011

A paper describing this new medical technology, "Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma," will be published June 13, 2011 in the Journal of Clinical Investigation (July 2011). This is a collaboration between Memorial Sloan-Kettering Cancer Center (MSKCC), Cornell University, and Hybrid Silica Technologies, a Cornell business start-up.

For the first time, scientists report a uniquely advanced and comprehensive characterization of Cornell Dots - an ultra small, cancer-targeted, multimodal silica nanoparticle - which has recently been approved as an "investigational new drug" (IND) by the FDA for a first-in-human clinical trial, says Michelle S. Bradbury, M.D., of the Memorial Sloan-Kettering Cancer Center and an assistant professor of radiology at Weill Cornell Medical College.

Cornell Dots are silica spheres less than 8 nanometers in diameter that enclose several dye molecules. (A nanometer is one-billionth of a meter, about the length of three atoms in a row.) The silica shell, essentially glass, is chemically inert and small enough to pass through the body and out in the urine. For clinical applications, the dots are coated with polyethylene glycol (PEG) so the body will not recognize them as foreign substances.

A guiding light within the body: To make the dots stick to tumor cells, organic molecules that bind to tumor surfaces or even specific locations within tumors can be attached to the PEG shell. When exposed to near-infrared light, the dots fluoresce much brighter than dye to serve as a beacon to identify the target cells. The technology, the researchers say, enables visualization during surgical treatment, showing invasive or metastatic spread to lymph nodes and distant organs, and can show the extent of treatment response.

Hooisweng Ow, a coauthor of the paper and once a graduate student working with Ulrich Wiesner, Cornell Professor of Materials Science and Engineering, developed first-generation Cornell dots in 2005. Together, Wiesner, Ow and Kenneth Wang, have co-founded the company Hybrid Silica Technologies (HST) to commercialize the invention. The combined team of MSKCC, Cornell and HST researchers is now in the process of forming a new commercial entity in New York City that will help transition the research into commercial products that will benefit cancer patient care.

"This is the first FDA IND approved inorganic particle platform of its class and properties that can be used for multiple clinical indications, two of which are explored: cancer targeting for diagnostics and future therapeutic diagnostics, as well as cancer disease staging and tumor burden assessment via lymph node mapping," says Bradbury.

The Cornell Dots were optimized for efficient renal clearance, allowing the body to pass them through the kidneys.

In addition, the scientists were able to perform real-time imaging of lymphatic drainage patterns and particle clearance rates, as well as sensitively detect nodal metastases. Nodal mapping is now being pursued under a new award of a BioAccelerate NYC Prize from the Partnership for New York City and the New York City Economic Development Corporation, which is expected to lead to another clinical trial in humans.

The lead authors of the paper are Miriam Benezra and Oula Penate-Medina, who are researchers are at MSKCC. Bradbury and Wiesner are the senior authors.

####

For more information, please click here

Contacts:
Blaine Friedlander
Cornell University

(607) 254-8093

Christine Hickey
Memorial Sloan-Kettering
(212) 639-3573

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project