Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Glowing Cornell Dots a Potential Cancer Diagnostic Tool Set for Human Trials

Abstract:
The U.S. Food and Drug Administration (FDA) has approved the first clinical trial in humans of a new technology: Cornell Dots, brightly glowing nanoparticles that can light up cancer cells in PET-optical imaging.

Glowing Cornell Dots a Potential Cancer Diagnostic Tool Set for Human Trials

Ithaca, NY | Posted on June 13th, 2011

A paper describing this new medical technology, "Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma," will be published June 13, 2011 in the Journal of Clinical Investigation (July 2011). This is a collaboration between Memorial Sloan-Kettering Cancer Center (MSKCC), Cornell University, and Hybrid Silica Technologies, a Cornell business start-up.

For the first time, scientists report a uniquely advanced and comprehensive characterization of Cornell Dots - an ultra small, cancer-targeted, multimodal silica nanoparticle - which has recently been approved as an "investigational new drug" (IND) by the FDA for a first-in-human clinical trial, says Michelle S. Bradbury, M.D., of the Memorial Sloan-Kettering Cancer Center and an assistant professor of radiology at Weill Cornell Medical College.

Cornell Dots are silica spheres less than 8 nanometers in diameter that enclose several dye molecules. (A nanometer is one-billionth of a meter, about the length of three atoms in a row.) The silica shell, essentially glass, is chemically inert and small enough to pass through the body and out in the urine. For clinical applications, the dots are coated with polyethylene glycol (PEG) so the body will not recognize them as foreign substances.

A guiding light within the body: To make the dots stick to tumor cells, organic molecules that bind to tumor surfaces or even specific locations within tumors can be attached to the PEG shell. When exposed to near-infrared light, the dots fluoresce much brighter than dye to serve as a beacon to identify the target cells. The technology, the researchers say, enables visualization during surgical treatment, showing invasive or metastatic spread to lymph nodes and distant organs, and can show the extent of treatment response.

Hooisweng Ow, a coauthor of the paper and once a graduate student working with Ulrich Wiesner, Cornell Professor of Materials Science and Engineering, developed first-generation Cornell dots in 2005. Together, Wiesner, Ow and Kenneth Wang, have co-founded the company Hybrid Silica Technologies (HST) to commercialize the invention. The combined team of MSKCC, Cornell and HST researchers is now in the process of forming a new commercial entity in New York City that will help transition the research into commercial products that will benefit cancer patient care.

"This is the first FDA IND approved inorganic particle platform of its class and properties that can be used for multiple clinical indications, two of which are explored: cancer targeting for diagnostics and future therapeutic diagnostics, as well as cancer disease staging and tumor burden assessment via lymph node mapping," says Bradbury.

The Cornell Dots were optimized for efficient renal clearance, allowing the body to pass them through the kidneys.

In addition, the scientists were able to perform real-time imaging of lymphatic drainage patterns and particle clearance rates, as well as sensitively detect nodal metastases. Nodal mapping is now being pursued under a new award of a BioAccelerate NYC Prize from the Partnership for New York City and the New York City Economic Development Corporation, which is expected to lead to another clinical trial in humans.

The lead authors of the paper are Miriam Benezra and Oula Penate-Medina, who are researchers are at MSKCC. Bradbury and Wiesner are the senior authors.

####

For more information, please click here

Contacts:
Blaine Friedlander
Cornell University

(607) 254-8093

Christine Hickey
Memorial Sloan-Kettering
(212) 639-3573

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Announcements

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Quantum Dots/Rods

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project