Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cooler, Smaller, Fuel Cells Goal of UIC Researchers

Abstract:
Fuel cells that use hydrogen or methane to generate electricity in chemical reactions while shedding only harmless byproducts like water are dream products for engineers, environmentalists and business leaders searching for clean, alternative ways to power tomorrow's vehicles.

Cooler, Smaller, Fuel Cells Goal of UIC Researchers

Chicago, IL | Posted on June 11th, 2011

While high hurdles stand before the cheap manufacturing of fuel cells, engineers and scientists at the University of Illinois at Chicago and nearby Argonne National Laboratory are starting a tightly focused research project to develop solid oxide fuel cells that may meet this goal.

"Solid oxide fuel cells offer the potential to scale down to very small dimensions," said Christos Takoudis, professor of bio- and chemical engineering at UIC, and lead investigator in a new $475,000 National Science Foundation grant to investigate ways to synthesize and characterize this type of fuel cell in a temperature range lower than what most currently operate.

SOFCs oxidize fuels by electrochemical conversion to create electricity, using a solid oxide as the electrolyte between an anode and cathode circuit. While their small size and solid state are attractive attributes, the higher operating temperatures that SOFCs' need -- currently as high as 1,800 degrees Fahrenheit -- are a big drawback.

Takoudis and his colleagues hope they can lower the operating temperatures to what is considered the "intermediate range" of between 1,100 and 1,500 degrees.

They also want to see if such fuel cells can be created at the "nano" level, measuring thickness in mere single-digit layers of atoms.

"We're trying to come up with new materials and processes to make these fuel cells very efficient at lower temperatures. Material and design demands for higher temperatures are much more severe and require additional precautionary measures," Takoudis said.

A key research focus is how well the main elements -- the anode, electrolyte and cathode -- work at interface junctions and what contamination problems exist, if any.

"As dimensions shrink, it becomes even more important, because the actual contact area is much greater with respect to the total volume than it is in bigger systems," Takoudis said.

UIC researchers will grow the materials to test as potential solid anodes, cathodes and electrolytes for their SOFCs, and then use Takoudis' lab and Argonne's Advanced Photon Source for a close probe of the materials as they generate electricity.

Jeffrey Miller, leader of Argonne's heterogeneous catalysis group, will oversee that part of the work. Other project investigators working with Takoudis include UIC engineering adjunct professors Gregory Jursich and Alan Zdunek, who will study the process of atomic layer and chemical vapor deposition methods to create fuel cell components and ways to maximize efficiency. Robert Klie, UIC associate professor of physics, will supervise electron microscopy study and analysis of material interfaces.

Creation of microscopic-sized, cooler-operating, highly efficient solid oxide fuel cells may open up a world of possible applications that offer the twin benefits of being ecologically benign and cheap.

"Today's cost of fuel cells is prohibitive," Takoudis said. "Our group wants to push the technology envelope to help make the costs reasonable and create a power source that does little harm to the environment."

####

For more information, please click here

Contacts:
Paul Francuch

(312) 996-3457

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project