Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Periodic structures in organic light-emitters can efficiently enhance and replenish surface plasmon waves

A scanning electron microscope image of an organic grating used to excite surface plasmons
A scanning electron microscope image of an organic grating used to excite surface plasmons

Abstract:
The irradiation of a metal surface with light or electrons can result in the formation of coherent electronic oscillations called surface plasmons, an effect ideal for applications such as optical communications on optoelectronic chips. Unfortunately, however, surface plasmons quickly lose their energy during transit, limiting their on-chip propagation distance. Jing Hua Teng at the A*STAR Institute of Materials Research and Engineering and co-workers from Nankai University and Nanyang Technological University under the Singapore-China Joint Research Program have now developed nanoscale structures that are able to replenish as well as guide surface plasmons on chips[1]. "These structures can be used as plasmonic sources for lab-on-a-chip applications," says Teng.

Periodic structures in organic light-emitters can efficiently enhance and replenish surface plasmon waves

Singapore | Posted on June 9th, 2011

At the resonance frequency, surface plasmons can generate intense light fields close to the surface, especially in metallic nanostructures. For this reason, surface plasmons have been widely studied for a variety of sensing and light-focusing applications. However, the electrical resistance of metals inevitably causes losses in the movements of the electronic currents involved in surface plasmons. It is therefore important to develop schemes that are able to regenerate surface plasmons as they travel along the surface of a chip.

One possibility is the use of organic light-emitting molecules such as rhodamine B. The researchers embedded molecules of rhodamine B in a polymer matrix that was then poured onto the surface of a silver film. To couple the light emission from rhodamine B to the surface plasmons, the polymer layer was structured into a periodic grating (pictured) matched to the resonance frequency of the plasmons. Adjusting the shape and periodicity of the grating allows the light emitted from the surface plasmons to be tailored.

Similar gratings are also used as mirrors in conventional on-chip semiconductor lasers. This structural similarity raises the possibility of combining the plasmonic effects demonstrated here with existing laser designs—an approach that could well lead to the realization of a plasmonic laser.

The advantage of a plasmonic laser over a semiconductor laser is that it can be made much smaller, which is important for the miniaturization of photonic circuits and on-chip sensing applications. "However, such lasers are difficult to fabricate," says Teng. "A number of challenges remain, including how to sufficiently confine the surface plasmons between the mirrors in this kind of configuration and how to reduce the metal damping losses."

Whether for applications in sensing or the on-chip manipulation of light, the potential of these gratings for replenishing plasmons represents an important step toward making plasmonics the key technology for photonic applications in nanoscience.


The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

[1] Zhang, D. G., Yuan, X. C. & Teng, J. H. Surface plasmon-coupled emission on metallic film coated with dye-doped polymer nanogratings. Applied Physics Letters 97, 231117 (2010).

####

For more information, please click here

Contacts:
Lee Swee Heng

Copyright © The Agency for Science, Technology and Research (A*STAR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article on A*STAR Research

Link to paper 'Surface plasmon-coupled emission on metallic film coated with dye-doped polymer nanogratings'

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Copper shines as flexible conductor August 29th, 2014

LEDs made from ‘wonder material’ perovskite: Colourful LEDs made from a material known as perovskite could lead to LED displays which are both cheaper and easier to manufacture in future August 5th, 2014

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Lab-on-a-chip

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Sensors

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Photonics/Optics/Lasers

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE