Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Innovative Device For Quantum Simulations

Abstract:
Quantum Simulator Prototype Replicates Structure of Graphene — First Step to a New Class of Semiconductor Nanostructures that Probe the Quantum World — Developed by a Team of American and European Researchers from Columbia Engineering, Italian National Research Council, and Others.

Innovative Device For Quantum Simulations

Italy | Posted on June 8th, 2011

A team of researchers from Columbia Engineering, the Italian National Research Council, Princeton University, University of Missouri, and University of Nijmegen (Netherlands) has developed an artificial semiconductor structure that has superimposed a pattern created by advanced fabrication methods that are precise at the nanometer scale. The pattern is similar to the honeycomb lattice that occurs in graphene. The device, called "artificial graphene" (AG), simulates quantum behavior of strongly interacting electrons. The research team sees the AG-device as a first step towards the realization of an innovative class of solid-state quantum simulators to explore fundamental quantum physics.

The research is reported in the June 3rd, 2011, issue of Science. The work is co-authored by Vittorio Pellegrini and Marco Polini of the NEST Laboratory of Istituto Nanoscienze-Cnr and Scuola Normale Superiore of Pisa; and by Aron Pinczuk, Applied Physics Professor at The Fu Foundation School of Engineering and Applied Science and Physics Professor at the School of Arts and Sciences, Columbia University; along with researchers from the Universities of Nijmegen, Missouri, and Princeton.

In order to study quantum phenomena that are difficult to be directly observed, scientists use artificial ad-hoc designed systems — quantum simulators — that can be controlled and manipulated in the laboratory. Researchers have only just begun to develop quantum simulators using different technologies. The AG-device is the first quantum simulator to be based on a semiconductor material that is designed with the goal of uncovering quantum behavior of electrons.

Phenomena such as high-temperature superconductivity, ferromagnetism, and exotic states of matter such as quantum Hall liquids and spin liquids originate from mutual interactions among many electrons. Exact calculations of the behavior of these complex systems are an impossible task even for the more sophisticated and powerful computers. Quantum simulators help bypass the problem by replacing the "uncomputable" quantum system with a controllable artificial one that is able to emulate the dynamics of the original system.

"Quantum simulators based on novel artificial semiconductor structures are at the crossroads of quantum science and innovative technologies," says Aron Pinczuk, Applied Physics Professor at The Fu Foundation School of Engineering and Applied Science and Physics Professor at the School of Arts and Sciences, Columbia University. "While the frontiers of quantum physics are being explored with giant accelerators, in this branch of condensed matter science we employ advanced methods that expand the state-of-the-art in growth and processing of semiconductors. We could describe our work on quantum simulators as ‘probing quantum weirdness in a nano-nut-shell.'

The simulator developed by the researchers consists of a honeycomb lattice realized on the surface of a Gallium Arsenide (GaAs) heterostructure using advanced nanofabrication methods. The artificial honeycomb lattice structure replicates that of graphene, a material in which electrons behave in a peculiar way because of the crystal-lattice geometry. With the ability to modify key parameters such as the lattice constant of the artificial lattice, the researchers are in the position to explore different regimes of electron-electron interactions in graphene-like systems.

Vittorio Pellegrini and Marco Polini from NEST Laboratory of Istituto Nanoscienze-Cnr and Scuola Normale Superiore note that the AG-device has been tested with a "first run" trial that generated an unexpected peculiar quantum state . "The early data we collected are quite promising and show the great potential our device has," they say. "The next step in this research is a fine-tuning of the AG-device". The researchers are excited about the potential of creating venues for the uncovering of novel quantum states that could, eventually, lead to new device concepts and eventually to an array of applications, for instance, in advanced information processing or in cryptography.

Pinczuk added that they hope next to achieve new breakthroughs through the creation of smaller nanofabricated structures reaching limits in which individual units in patterns have lengths of five nanometers. "This is a state-of-the-art that should open access to physics and materials science that has not yet been explored!"

Full bibliographic information
'Two-Dimensional Mott-Hubbard Electrons in an Artificial Honeycomb Lattice', A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vignale, M. I. Katsnelson, A. Pinczuk, L. N. Pfeiffer, K. W. West, and V. Pellegrini, Science 3 June 2011: 1176-1179. DOI:10.1126/science.1204333]

####

About CNR-Consiglio Nazionale delle Ricerche
NEST is an interdisciplinary research and training centre that addresses scientific issues at the nanoscale. The "National Enterprise for nanoScience and nanoTechnology" (NEST) comprises the Istituto Nanoscienze (CnrNano) and the laboratories of Scuola Normale Superiore (SNS). The Istituto Nanoscienze is a recently founded institute of the National Research Council (Cnr) devoted to frontier research in nanoscience and nanotechnology. Interests range from fundamental science to emerging technologies as well as applied projects of direct industrial and societal interest. SNS is a center of excellence of the Italian University system. It was founded by Napoleon in 1810 as a branch of the École Normale Supérieure in Paris. The greatest resource of the Scuola Normale is the quality of its students.
www.nano.cnr.it/

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF- and NIH-funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world’s leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society’s more vexing challenges.

For more information, please click here

Contacts:
Marco Ferrazzoli


Vittorio Pellegrini
Laboratorio Nest
Istituto nanoscienze Cnr


Marco Polini
Laboratorio Nest
Istituto nanoscienze Cnr


Media contacts:
Maddalena Scandola
Institute of Nanoscience Press Office


Holly Evarts
Director of Strategic Communications and Media Relations
Columbia Engineering

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Graphene

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

Discoveries

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

Announcements

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Research partnerships

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Quantum nanoscience

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project