Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Microscopy with a quantum tip

An ultra-cold cloud of atoms (yellow) is trapped in a magnetic trap and scanned across a nanostruc-tured surface. In “contact mode” a loss of atoms from the cloud can be measured, which depends on the surface topography. In the “dynamical mode” the frequency and amplitude of the cloud’s cen-tre-of-mass oscillation changes depending on the surface structure. Both methods allow the surface topography to be imaged.
An ultra-cold cloud of atoms (yellow) is trapped in a magnetic trap and scanned across a nanostruc-tured surface. In “contact mode” a loss of atoms from the cloud can be measured, which depends on the surface topography. In the “dynamical mode” the frequency and amplitude of the cloud’s cen-tre-of-mass oscillation changes depending on the surface structure. Both methods allow the surface topography to be imaged.

Abstract:
Microscopes make tiny objects visible, as their name suggests. However, modern microscopes often do this in a round-about way, not by optically imaging the object with light, but by probing the surface with a fine, needle-like tip. Here, where optical imaging methods reach their limits, scanning probe microscopes can show, by different methods, structures as small as one millionth of a millimetre. With their help, phenomena in the nanoworld become visible and targeted manipulation becomes possible. The heart of a scanning probe microscope is a moveable, suspended tip, which, like the needle on a record player, reacts to small height variations on the surface, and turns these into signals that can be displayed on a computer.

Microscopy with a quantum tip

Germany | Posted on June 8th, 2011

Tübingen researchers have now been able to create this tip, not out of solid material, as in the case of the record player, but out of an ultra-cold, dilute gas of atoms. To do this, they cooled an especially pure gas of rubidium atoms to a temperature less than a millionth of a degree above absolute zero temperature, and stored the atoms in a magnetic trap. This "quantum tip" can be precisely positioned and enables the probing of nanostructured surfaces. With this method, more accurate measurements of the interactions between atoms and surfaces are possible and further cooling of the probe tip gives rise to a so-called Bose-Einstein condensate, which allows a significant increase in the resolution of the microscope. The work was led by Prof. Dr. József Fortágh, head of the Nano-Atom-Optics group, and his co-worker Dr. Andreas Günther. PhD student Michael Gierling is first author of the study, which appeared on May 29 as an advance online publication in the scientific journal "Nature Nanotechnology".

The scientists demonstrated the use of their cold-atom scanning probe tip by testing a surface with vertically grown carbon nanotubes. The tip was scanned over the sample using a type of magnetic conveyor belt. The first measurements in the so-called "contact mode" revealed how the tall tubes stripped some atoms out of the atom cloud. These atom losses told the researchers about the location and height of the nanotubes and enabled the imaging of the surface topography.

When the temperature of an atomic gas approaches absolute zero, a quantum mechanical phenomenon occurs, turning the cloud into what's known as a Bose-Einstein condensate. In this state it is no longer possible to distinguish between the atoms. They become, so to speak, a single, giant "super-atom". With such a Bose-Einstein condensate it was possible for the Tübingen scientists to microscopically resolve individual freestanding nanotubes. According to the researchers, future improvements to the cold-atom scanning probe microscope could, in theory, increase the current resolution of about eight micrometres by a factor of a thousand.

The microscope also functions in the so-called "dynamical mode". The researchers again created a Bose-Einstein condensate close to the nanotubes. They then allowed the condensate to oscillate perpendicular to the surface, and observed how the frequency and size of these oscillations changed, depending on the topography of the nanostructured sample. In this way they were able to obtain a well resolved image of the surface. The researchers write that this method has an advantage because no atoms are loss from the cloud. This could be helpful in cases where atoms that are adsorbed on the sample might influence subsequent measurements.

The researchers conclude: "the extreme purity of the probe tip and quantum control over the atomic states in a Bose-Einstein condensate open up new possibilities of scanning probe microscopy with non-classical probe tips". Beyond this, the researchers hope to develop new applications from the demonstrated coupling between ultra-cold quantum gases and nanostructures.

The study was done within the framework of the BMBF programme "NanoFutur" and in collaboration with several groups from the Center for Collective Quantum Phenomena (CQ) Tübingen, to which various research groups from the Faculty of Mathematics and Natural Science belong.

Full bibliographic information

M. Gierling, P. Schneeweiß, G. Visanescu, P. Federsel, M. Häffner, D. P. Kern, T. E. Judd, A. Gün-ther, and J. Fortágh: Cold-atom scanning probe microscopy. Nature Nanotechnology, Online-publication from 29th May 2011, DOI: 10.1038/NNANO.2011.80

####

For more information, please click here

Contacts:
Michael Seifert


Dr. Andreas Günther &
Prof. Dr. József Fortágh
Universität Tübingen
Physikalisches Institut
Arbeitsgruppe Nano-Atomoptik
Telephone: +49 (0) 7071 29 76281
+49 (0) 7071 29 76270
E-mail:

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Imaging

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Discoveries

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Announcements

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Tools

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Photonics/Optics/Lasers

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE