Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research Examines How To Apply Conductive Nanocoatings To Textiles

Abstract:
Imagine plugging a USB port into a sheet of paper, and turning it into a tablet computer. It might be a stretch, but ideas like this have researchers at North Carolina State University examining the use of conductive nanocoatings on simple textiles - like woven cotton or even a sheet of paper.

Research Examines How To Apply Conductive Nanocoatings To Textiles

Raleigh, NC | Posted on June 7th, 2011

"Normally, conductive nanocoatings are applied to inorganic materials like silicon. If we can find a way to apply them to textiles - cheap, flexible materials with a contorted surface texture - it would represent a cost-effective approach and framework for improving current and future types of electronic devices," says Dr. Jesse Jur, assistant professor of textile engineering, chemistry and science, and lead author of a paper describing the research.

Using a technique called atomic layer deposition, coatings of inorganic materials, typically used in devices such as solar cells, sensors and microelectronics, were grown on the surface of textiles like woven cotton and nonwoven polypropylene - the same material that goes into reusable grocery store bags. "Imagine coating a textile fabric so that each fiber has the same nanoscale-thick coating that is thousands of times thinner than a human hair - that's what atomic layer deposition is capable of doing," Jur says. The research, done in collaboration with the laboratory of Dr. Gregory Parsons, NC State Alcoa Professor of Chemical and Biomolecular Engineering, shows that common textile materials can be used for complex electronic devices.

As part of their study, the researchers created a procedure to quantify effective electrical conductivity of conductive coatings on textile materials. The current standard of measuring conductivity uses a four-point probe that applies a current between two probes and senses a voltage between the other two probes. However, these probes were too small and would not give the most accurate reading for measurements on textiles. In the paper, researchers describe a new technique using larger probes that accurately measures the conductivity of the nanocoating. This new system gives researchers a better understanding of how to apply coatings on textiles to turn them into conductive devices.

"We're not expecting to make complex transistors with cotton, but there are simple electronic devices that could benefit by using the lightweight flexibility that some textile materials provide," Jur explains. "Research like this has potential health and monitoring applications since we could potentially create a uniform with cloth sensors embedded in the actual material that could track heart rate, body temperature, movement and more in real time. To do this now, you would need to stick a bunch of wires throughout the fabric - which would make it bulky and uncomfortable.

"In the world of electronics, smaller and more lightweight is always the ideal. If we can improve the process of how to apply and measure conductive coatings on textiles, we may move the needle in creating devices that have the requisite conductive properties, with all the benefits that using natural textile materials affords us," Jur says.

A paper describing the research is published in the June issue of Advanced Functional Materials. Fellow NC State researchers include Parsons, post-doctoral researcher Christopher Oldham, and graduate student William Sweet. Funding for the study came from the Department of Energy and the Nonwovens Cooperative Research Center.

####

For more information, please click here

Contacts:
Caroline Barnhill
NC State News Services
919.515.6251

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Nanoelectronics

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Textiles/Clothing

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project