Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research Examines How To Apply Conductive Nanocoatings To Textiles

Abstract:
Imagine plugging a USB port into a sheet of paper, and turning it into a tablet computer. It might be a stretch, but ideas like this have researchers at North Carolina State University examining the use of conductive nanocoatings on simple textiles - like woven cotton or even a sheet of paper.

Research Examines How To Apply Conductive Nanocoatings To Textiles

Raleigh, NC | Posted on June 7th, 2011

"Normally, conductive nanocoatings are applied to inorganic materials like silicon. If we can find a way to apply them to textiles - cheap, flexible materials with a contorted surface texture - it would represent a cost-effective approach and framework for improving current and future types of electronic devices," says Dr. Jesse Jur, assistant professor of textile engineering, chemistry and science, and lead author of a paper describing the research.

Using a technique called atomic layer deposition, coatings of inorganic materials, typically used in devices such as solar cells, sensors and microelectronics, were grown on the surface of textiles like woven cotton and nonwoven polypropylene - the same material that goes into reusable grocery store bags. "Imagine coating a textile fabric so that each fiber has the same nanoscale-thick coating that is thousands of times thinner than a human hair - that's what atomic layer deposition is capable of doing," Jur says. The research, done in collaboration with the laboratory of Dr. Gregory Parsons, NC State Alcoa Professor of Chemical and Biomolecular Engineering, shows that common textile materials can be used for complex electronic devices.

As part of their study, the researchers created a procedure to quantify effective electrical conductivity of conductive coatings on textile materials. The current standard of measuring conductivity uses a four-point probe that applies a current between two probes and senses a voltage between the other two probes. However, these probes were too small and would not give the most accurate reading for measurements on textiles. In the paper, researchers describe a new technique using larger probes that accurately measures the conductivity of the nanocoating. This new system gives researchers a better understanding of how to apply coatings on textiles to turn them into conductive devices.

"We're not expecting to make complex transistors with cotton, but there are simple electronic devices that could benefit by using the lightweight flexibility that some textile materials provide," Jur explains. "Research like this has potential health and monitoring applications since we could potentially create a uniform with cloth sensors embedded in the actual material that could track heart rate, body temperature, movement and more in real time. To do this now, you would need to stick a bunch of wires throughout the fabric - which would make it bulky and uncomfortable.

"In the world of electronics, smaller and more lightweight is always the ideal. If we can improve the process of how to apply and measure conductive coatings on textiles, we may move the needle in creating devices that have the requisite conductive properties, with all the benefits that using natural textile materials affords us," Jur says.

A paper describing the research is published in the June issue of Advanced Functional Materials. Fellow NC State researchers include Parsons, post-doctoral researcher Christopher Oldham, and graduate student William Sweet. Funding for the study came from the Department of Energy and the Nonwovens Cooperative Research Center.

####

For more information, please click here

Contacts:
Caroline Barnhill
NC State News Services
919.515.6251

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Discoveries

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Textiles/Clothing

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project