Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Research creates nanoparticles perfectly formed to tackle cancer

Dr Ross Boyle
Dr Ross Boyle

Abstract:
Researchers from the University of Hull have discovered a way to load up nanoparticles with large numbers of light-sensitive molecules to create a more effective form of photodynamic therapy (PDT) for treating cancer.

Research creates nanoparticles perfectly formed to tackle cancer

Hull, UK | Posted on June 6th, 2011

Photodynamic therapy uses molecules which, when irradiated with light, cause irreparable damage to cells by creating toxic forms of oxygen, called reactive oxygen species.

Most PDT works with individual light-sensitive molecules - but the new nanoparticles could each carry hundreds of molecules to a cancer site.

A number of different light-sensitive molecules - collectively known as photosensitisers - are used in PDT and each absorbs a very specific part of the light spectrum. The research team - from the University of Hull's Department of Chemistry - placed one kind of photosensitiser inside each nanoparticle and another on the outside, which meant that far more reactive oxygen species could be created from the same amount of light. The findings are published in the current issue of Molecular Pharmaceutics.

The nanoparticles have also been designed to be the perfect size and shape to penetrate easily into the tumour, as lead researcher, Dr Ross Boyle, explains.

"Small cancer tumours get nutrients and oxygen by diffusion, but once tumours reach a certain size, they need to create blood vessels to continue growing, " he says. "These new blood vessels, or neovasculature, are ‘leaky' because the vessel walls are not as tightly knit as normal blood vessels. Our nanoparticles have been designed so the pressure in the blood vessels will push them through the space between the cells to get into the tumour tissue."

The nanoparticles are made from a material that limits the leaching of its contents while in the bloodstream, but when activated with light, at the tumour, the toxic reactive oxygen species can diffuse freely out of the particles; meaning that damage is confined to the area of the cancer.

The researchers tested the nanoparticles on colon cancer cells, and while they were able to penetrate the cells, they also found that the nanoparticles could still be effective when near - rather than inside - the cancer cells.

"Some types of cancer cell are able to expel conventional drugs, so if we can make this kind of therapy work simply by getting the nanoparticles between the cancer cells, rather than inside them, it could be very beneficial," says Dr Boyle.

####

For more information, please click here

Contacts:
For media enquiries please contact:
Claire Mulley
01482 466943 or
07809 585965
or
Abigail Chard, Campus PR
0113 258 9880 or
07960 448532

Copyright © The University of Hull

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Nanomedicine

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Discoveries

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Announcements

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Photonics/Optics/Lasers

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic