Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A step towards a revolution in law enforcement

Latent fingermarks from a male donor developed on aluminium foil. Image provided by Xanthe Spindler
Latent fingermarks from a male donor developed on aluminium foil. Image provided by Xanthe Spindler

Abstract:
In summary:

- UTS forensic science researcher Dr Xanthe Spindler has achieved a world first with the preliminary development of a novel immunogenic method that could recover usable fingerprints from old evidence and difficult surfaces

- It is also a step in pursuit of the "Holy Grail" of a reliable method for recovering fingerprints from human skin

A step towards a revolution in law enforcement

Sydney, Australia | Posted on June 6th, 2011

Despite fingerprinting being essentially the foundation technique of modern forensic science, only a fraction of all the fingermarks at a crime scene are actually detected.

Now the work of UTS forensic science researcher Dr Xanthe Spindler has made an important step towards recovering usable fingerprints from old evidence and surfaces long considered too difficult by crime scene investigators.

The collaboration between the UTS Centre for Forensic Science, the University of Canberra, the Australian Federal Police and Northern Illinois University has resulted in a forensic science world first with the preliminary development of a novel immunogenic method to detect latent fingermarks.

The new method developed by Dr Spindler as part of her PhD work uses antibodies designed to target amino acids and can detect aged, dry and weak fingerprints that can't be captured using traditional fingerprinting methods.

"We've been able to successfully target amino acids on non-porous surfaces for the first time, with promising results in enhancing aged and degraded fingermarks that typically give poor results with traditional powdering and cyanoacrylate fuming," Dr Spindler said. "The potential is there to go back to old cases to see what might now be recovered."

Recently published in Chemical Communications, a journal of the Royal Society of Chemistry, the work is also a step in pursuit of the "Holy Grail" as Dr Spindler calls it, a reliable method for recovering fingerprints from human skin.

"Current techniques of powdering and fuming have never worked well on skin, with the ability to only enhance fingermarks less than three hours old," Dr Spindler said.

"The use of immunogenic reagents targeted at specific markers in body fluids will improve the ability to enhance fingermarks on problematical surfaces such as human skin.

"On other surfaces existing methods are most effective recovering fresh fingermarks that contain a reasonable level of moisture. That has meant that people with dry skin are weak donors and evidence is rapidly degraded in dry conditions or after long storage.

"The targeting of amino acids in fingerprint detection has been around since the mid-'50s, but its use has been limited largely to porous surfaces like paper because of the fragility of amino acid secretions on non-porous surfaces.

"Our work has been a proof-of-concept for a reagent that links amino acid-binding antibodies to gold nanoparticles, with the nanoparticles giving sharper detail in developed fingerprints."

With the support of the Australian Federal Police it is hoped to build on the results to develop a reliable and cost-effective technique with the potential to deliver "transformational outcomes for law enforcement."

In addition to Dr Spindler, chief investigators and key personnel have included the Director of the UTS Centre for Forensic Science Professor Claude Roux, Professor Chris Lennard from the University of Canberra, Professor Oliver Hofstetter from Northern Illinois University and Dr Andrew McDonagh from UTS.

####

For more information, please click here

Contacts:
(Media enquiries)
Terry Clinton
(+61 2 9514 1623)

Copyright © University of Technology, Sydney

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

New approach to microlasers: Technique for 'phase locking' arrays of tiny lasers could lead to terahertz security scanners June 17th, 2016

Leti Innovation Day in Lyon Will Explore New Security Challenges and Responses for a Safe Connected World June 15th, 2016

A better hologram for fraud protection and wearable optics: Nanotechnology improves holographic capabilities by encoding light polarization May 16th, 2016

Russian scientists develop long-range secure quantum communication system April 13th, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic