Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Microcantilevers are masters of measurement: Detergents, study of diseases may benefit from Rice University research

Abstract:
Devices that look like tiny diving boards are a launching platform for research that could improve detergents and advance understanding of disease.

Rice University researcher Sibani Lisa Biswal and Kai-Wei Liu, a graduate student in Biswal's lab who recently earned her doctorate at Rice, used microcantilevers as ultrasensitive measuring devices to study how lipid bilayers interact with surfactants.

Microcantilevers are masters of measurement: Detergents, study of diseases may benefit from Rice University research

Houston, TX | Posted on June 2nd, 2011

Their results were reported online this month in the American Chemical Society journal Analytical Chemistry.

Lipid bilayers are membranes that surround the cells of every living organism. Along with specific membrane proteins, they act as gatekeepers that allow ions, proteins and other essential molecules to pass into the cell. Individual lipid molecules in the bilayer have a hydrophilic head and two hydrophobic tails. They naturally aggregate into two-layered sheets, with the heads pointed out and the water-avoiding tails pointed inward.

Liu and Biswal, an assistant professor in chemical and biomolecular engineering, described in a previous paper how to attach lipid bilayers to microcantilevers, which have traditionally been used as analytical biosensors. A protective coating on the thin gold layer makes the top of the "diving board" inert, so the membranes attach themselves to and spread out over the silicon dioxide bottom. The exchange of energy as the membrane meets the solid platform changes the surface tension and bends the cantilever enough to be measured by a laser sensor. Any change to the membrane will alter the bend, which can be measured with nanometer resolution, Biswal said.

In the new work, the researchers introduced varying concentrations of lysolipids to the supported lipid bilayers. Lysolipids are surfactants, compounds that lower the surface tension of liquids and can act as detergents, among other things. Like the molecules that make up lipid bilayers, lysolipid molecules have a hydrophilic head but only one hydrophobic tail.

Liu and Biswal found that in low concentrations, lysolipid molecules wedged themselves into the bilayer as their water-hating tails cozied up to the membrane's hydrophobic inner ring; this changed the surface tension on the cantilever.

All of these forces can be measured, Biswal said. "The cantilever naturally wants to bend with whatever force the membrane puts on it," she said.

In high concentrations, lysolipid monomers form micelles, rings of molecules that interact with the membranes and disrupt the hydrophobic interactions that keep them together.

Depending on their strength (determined by the chemical makeup of their hydrophobic tails), the micelles can either weaken the membranes by pulling lipid molecules away or destroy the membranes completely.

That is precisely what you want a detergent to do to a stain, and the new technique would be very useful for fine-tuning cleaning agents, Biswal said.

"A vast amount of research has gone into detergency," she said. "There are a lot of detergencies based on enzymes, the biomolecules that cleave peptide bonds. A lot of stains are organic molecules. If you can cleave them, you can clean surfaces much better."

Biswal sees other potential for the technique. "We're interested in using this as a general platform for looking at small molecules," she said.

Liu is pursuing one such path. She is studying how hepatitis C peptides behave in the presence of a microcantilever-mounted membrane. "This could be a way to probe how viruses are able to enter cell membranes or disrupt proteins on their surfaces," she said.

Biswal suggested that carbon-60 atoms -- the buckyballs discovered at Rice in 1985 -- might also be a good subject. "We don't know enough about how nanomaterials interact with cell membranes, and since buckyballs are naturally hydrophobic, they might be interesting to investigate."

The Robert A. Welch Foundation funded the research.

####

For more information, please click here

Contacts:
Mike Williams
PHONE: 713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Discoveries

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Announcements

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project