Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > University of Houston develops method for creating single-crystal arrays of graphene: New method marks advance in efforts to develop a replacement for silicon in high-performance electronics

Abstract:
University of Houston researchers have developed a method for creating single-crystal arrays of the material graphene, an advance that opens the possibility of a replacement for silicon in high-performance computers and electronics. The work by UH researchers and their collaborators is featured on the cover of the June issue of Nature Materials.

University of Houston develops method for creating single-crystal arrays of graphene: New method marks advance in efforts to develop a replacement for silicon in high-performance electronics

Houston, TX | Posted on June 2nd, 2011

Graphene is a one-atom-thick layer of carbon that was first fabricated in 2004. Single-crystal arrays of the material could be used to create a new class of high-speed transistors and integrated circuits that use less energy than silicon electronics because graphene conducts electricity with little resistance or heat generation.

But the industry needs a reliable and defect-free method for manufacturing large quantities of single crystals of graphene. The development reported in Nature Materials marks a step towards perfecting such a method.

"Using these seeds, we can grow an ordered array of thousands or millions of single crystals of graphene," said Qingkai Yu, the paper's first author. Yu developed the single-crystal growth process at the UH Center for Advanced Materials (CAM), where he was a research assistant professor of electrical and computer engineering.

"We hope the industry will look at these findings and consider the ordered arrays as a possible means of fabricating electronic devices," said Yu, who is now an assistant professor at Texas State University in San Marcos and remains a project leader at CAM.

Yu and Steven Pei, UH professor of electrical and computer engineering and CAM's deputy director, invented the graphene seeded-growth technique that UH patented in 2010.

"There is still a long way to go. However, this development makes the fabrication of integrated circuits with graphene transistors possible. This may actually be the first viable integrated circuit technology based on nano-electronics," Pei said.

Yong P. Chen, an assistant professor of nanoscience and physics at Purdue University, was the paper's co-corresponding author.

At CAM, single-crystal graphene arrays were grown on top of a copper foil inside a chamber containing methane gas using a process called chemical vapor deposition. This process was pioneered by Yu at CAM in 2008 and is now widely accepted as the standard method to create large-area graphene films for potential applications in touch-screen displays, e-books and solar cells.

"Graphene isn't there yet, in terms of high quality mass production like silicon, but this is a very important step in that direction," said Chen, who led the graphene characterization efforts at Purdue.

In addition to Yu and Pei, UH graduate students Wei Wu and Zhihua Su, postdoctoral researchers Zhihong Liu and Peng Peng and assistant professor Jiming Bao along with Chen and nine other researchers from Purdue University, Brookhaven National Laboratory, Argonne National Laboratories and Carl Zeiss SMT Inc. co-authored the paper.

Last year, two scientists received the Nobel Prize in physics for discovering graphene. At that time, Yu was working at CAM to develop ways to produce mass quantities of high-quality graphene.

The findings reported in Nature Materials demonstrated that researchers could control the growth of the ordered arrays. The researchers also were the first to demonstrate the electronic properties of individual grain boundaries.

The research was supported through a variety of funding sources, including the National Science Foundation, the U.S. Department of Energy, the Department of Homeland Security, the Defense Threat Reduction Agency, IBM Inc., the Welch Foundation, the Miller Family Endowment and Midwest Institute for Nanoelectronics Discovery.

####

For more information, please click here

Contacts:
Laura Tolley

713-743-0778

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Graphene

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nanoelectronics

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Military

NanoTechnology for Defense (NT4D) October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE