Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Into the (Mis)fold: a Diagnostic Tool for Proteins Berkeley Lab developed technique could help pinpoint Alzheimer’s in its early stages

Abstract:
Alzheimer's disease is the most common form of dementia, currently affecting more than 35 million people worldwide. Although many genetic and hereditary factors are thought to contribute to the telltale deterioration of memory and cognitive functions resulting from Alzheimer's, a central aspect to this disease is an accumulation of misfolded proteins in the brain.

Into the (Mis)fold: a Diagnostic Tool for Proteins Berkeley Lab developed technique could help pinpoint Alzheimer’s in its early stages

Berkeley, CA | Posted on June 1st, 2011

Now, scientists at Berkeley Lab have engineered a universal, highly sensitive technique for detecting misfolded proteins in biological fluids. This groundbreaking nanoscience capability could help pinpoint Alzheimer's in its early stages and enable researchers to discover new therapies for this devastating disease.

When a protein doesn't fold into its normal shape, it also doesn't perform its normal functions. This disruption in behavior could lead to proteins that aggregate into plaques or deposits and become toxic to cells. In Alzheimer's disease, aggregates of a protein called beta-amyloid form in the central nervous system, causing damage to cells in the brain and triggering dementia.

An analytical capability for measuring tiny clusters of these proteins—before irreversible damage occurs—would be a powerful tool in the early detection of Alzheimer's and other misfolded protein diseases. However, despite significant research efforts, there are currently no diagnostic tools available to selectively detect small-scale aggregates of misfolded proteins in biological fluids, such as blood or spinal fluid.

"This collaboration illustrates how a biomedical problem can also be a nanoscience problem, in which a chemical reagent is needed to recognize partially aggregated proteins," said Ron Zuckermann, Director of the Biological Nanostructures Facility at the Molecular Foundry, a nanoscience user facility at Berkeley Lab. "We were faced with the challenge of synthesizing a material that's capable of specifically detecting this aggregated protein and not any of the other proteins in the blood."

Zuckermann is a pioneer in the development of peptoids, synthetic polymers that behave like naturally occurring proteins but can withstand aggressive chemical and biological environments without degrading. His group previously discovered peptoids capable of self-assembling into nanoscale jaws, nanosheets, and nanoscale ropes that braid themselves.

"Peptoids are ideal for this application as they are similar to proteins in structure, but different enough that they aren't degraded by enzymes in the blood," added Zuckermann. "We can now engineer materials that are capable of specific recognition yet can evade destruction."

Using the Foundry's state-of-the-art robotic synthesis capabilities, the team prepared a panel of peptoids designed to capture a misfolded prion protein, an abnormal, infectious form of a cellular protein found in the brain. By attaching these peptoids to tiny magnetic beads, the team could then use a magnet to isolate misfolded proteins directly from blood samples. The most selective and sensitive of these peptoids, coined aggregate-specific reagent, or ASR1, could capture not only the prion aggregates, but aggregates associated with Alzheimer's disease as well.

"Our study shows how basic research capabilities can be translated into a practical application," said Zuckermann. "The potential for this tool to serve as a diagnostic in other misfolded protein diseases, such as Parkinson's and Type II diabetes, is wide open, and I'm excited to continue this collaboration."

This research is reported in a paper titled, "A universal method for detection of amyloidogenic misfolded proteins," appearing in the journal Biochemistry and available in Biochemistry online. Co-authoring the paper with Zuckermann were Cleo Salisbury, Xuemei Wang, Carol Gao, Michael Connolly, Thieu Bleu, John Hall, Joseph Fedynyshyn, Sophie Allauzen and David Peretz.

Portions of this work were supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project