Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Into the (Mis)fold: a Diagnostic Tool for Proteins Berkeley Lab developed technique could help pinpoint Alzheimer’s in its early stages

Abstract:
Alzheimer's disease is the most common form of dementia, currently affecting more than 35 million people worldwide. Although many genetic and hereditary factors are thought to contribute to the telltale deterioration of memory and cognitive functions resulting from Alzheimer's, a central aspect to this disease is an accumulation of misfolded proteins in the brain.

Into the (Mis)fold: a Diagnostic Tool for Proteins Berkeley Lab developed technique could help pinpoint Alzheimer’s in its early stages

Berkeley, CA | Posted on June 1st, 2011

Now, scientists at Berkeley Lab have engineered a universal, highly sensitive technique for detecting misfolded proteins in biological fluids. This groundbreaking nanoscience capability could help pinpoint Alzheimer's in its early stages and enable researchers to discover new therapies for this devastating disease.

When a protein doesn't fold into its normal shape, it also doesn't perform its normal functions. This disruption in behavior could lead to proteins that aggregate into plaques or deposits and become toxic to cells. In Alzheimer's disease, aggregates of a protein called beta-amyloid form in the central nervous system, causing damage to cells in the brain and triggering dementia.

An analytical capability for measuring tiny clusters of these proteins—before irreversible damage occurs—would be a powerful tool in the early detection of Alzheimer's and other misfolded protein diseases. However, despite significant research efforts, there are currently no diagnostic tools available to selectively detect small-scale aggregates of misfolded proteins in biological fluids, such as blood or spinal fluid.

"This collaboration illustrates how a biomedical problem can also be a nanoscience problem, in which a chemical reagent is needed to recognize partially aggregated proteins," said Ron Zuckermann, Director of the Biological Nanostructures Facility at the Molecular Foundry, a nanoscience user facility at Berkeley Lab. "We were faced with the challenge of synthesizing a material that's capable of specifically detecting this aggregated protein and not any of the other proteins in the blood."

Zuckermann is a pioneer in the development of peptoids, synthetic polymers that behave like naturally occurring proteins but can withstand aggressive chemical and biological environments without degrading. His group previously discovered peptoids capable of self-assembling into nanoscale jaws, nanosheets, and nanoscale ropes that braid themselves.

"Peptoids are ideal for this application as they are similar to proteins in structure, but different enough that they aren't degraded by enzymes in the blood," added Zuckermann. "We can now engineer materials that are capable of specific recognition yet can evade destruction."

Using the Foundry's state-of-the-art robotic synthesis capabilities, the team prepared a panel of peptoids designed to capture a misfolded prion protein, an abnormal, infectious form of a cellular protein found in the brain. By attaching these peptoids to tiny magnetic beads, the team could then use a magnet to isolate misfolded proteins directly from blood samples. The most selective and sensitive of these peptoids, coined aggregate-specific reagent, or ASR1, could capture not only the prion aggregates, but aggregates associated with Alzheimer's disease as well.

"Our study shows how basic research capabilities can be translated into a practical application," said Zuckermann. "The potential for this tool to serve as a diagnostic in other misfolded protein diseases, such as Parkinson's and Type II diabetes, is wide open, and I'm excited to continue this collaboration."

This research is reported in a paper titled, "A universal method for detection of amyloidogenic misfolded proteins," appearing in the journal Biochemistry and available in Biochemistry online. Co-authoring the paper with Zuckermann were Cleo Salisbury, Xuemei Wang, Carol Gao, Michael Connolly, Thieu Bleu, John Hall, Joseph Fedynyshyn, Sophie Allauzen and David Peretz.

Portions of this work were supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Laboratories

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Emergency Use Authorization for Gene-RADAR® Zika Virus Test: FDA Authorization for the Gene-RADAR® Zika Virus Test on the XPRIZE-Winning Gene-RADAR® Platform April 14th, 2017

Nanomedicine

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Nanotubes that build themselves April 14th, 2017

Emergency Use Authorization for Gene-RADAR® Zika Virus Test: FDA Authorization for the Gene-RADAR® Zika Virus Test on the XPRIZE-Winning Gene-RADAR® Platform April 14th, 2017

Discoveries

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Announcements

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project