Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New synchrotron technique could see hidden building blocks of life

Application of direct tomography to a layered C/SiC sample. The left part of the image shows a photograph of the sample, measuring approximately 7 x 10 x 5 mm3. The part studied with X-rays was the indicated subvolume of 7 x 2 x 1 mm3. The result, a detailed 3D map of chemical bonds, is visualised here as a set of isosurfaces within the subvolume, shown on the right, where the different colours represent the different carbon bonds present in the sample. Credit: Simo Huotari (University of Helsinki), with permission from Nature Materials.
Application of direct tomography to a layered C/SiC sample. The left part of the image shows a photograph of the sample, measuring approximately 7 x 10 x 5 mm3. The part studied with X-rays was the indicated subvolume of 7 x 2 x 1 mm3. The result, a detailed 3D map of chemical bonds, is visualised here as a set of isosurfaces within the subvolume, shown on the right, where the different colours represent the different carbon bonds present in the sample. Credit: Simo Huotari (University of Helsinki), with permission from Nature Materials.

Abstract:
Scientists from Finland and France have developed a new synchrotron X-ray technique that may revolutionise the chemical analysis of rare materials like meteoric rock samples or fossils. The results have been published on 29 May 2011 in Nature Materials as an advance online publication.

New synchrotron technique could see hidden building blocks of life

Helsinki, Finland and Grenoble, France | Posted on May 30th, 2011

Life, as we know it, is based on the chemistry of carbon and oxygen. The three-dimensional distribution of their abundance and chemical bonds has been difficult to study up to now in samples where these elements were embedded deep inside other materials. Examples are tiny inclusions of possible water or other chemicals inside Martian rock samples, fossils buried inside a lava rock, or minerals and chemical compounds within meteorites.

X-ray tomography, which is widely used in medicine and material science, is sensitive to the shape and texture of a given sample but cannot reveal chemical states at the macroscopic scale. For instance graphite and diamond both consist of pure carbon, but they differ in the chemical bond between the carbon atoms. This is why their properties are so radically different. Imaging the variations in atomic bonding has been surprisingly difficult, and techniques for imaging of chemical bonds are highly desirable in many fields like engineering and research in physics, chemistry, biology, and geology.

Now an international team of scientists from the University of Helsinki, Finland, and the European Synchrotron Radiation Facility (ESRF), Grenoble, France, has developed a novel technique that is suitable exactly for this purpose. The researchers use extremely bright X-rays from a synchrotron light source to form images of the chemical bond distribution of different carbon forms embedded deep in an opaque material; an achievement previously thought to be impossible without destroying the sample.

Currently the required radiation doses are too large for an immediate application on biological tissue, but perhaps future dedicated instruments may be optimised for such applications as well. The most promising applications can thus be found from physics, materials science, geology, chemistry, and industry.

"Now I would love to try this on Martian or moon rocks. Our new technique can see not only which elements are present in any inclusions but also what kind of molecule or crystal they belong to. If the inclusion contains oxygen, we can tell whether the oxygen belongs to a water molecule. If it contains carbon, we can tell whether it is graphite, diamond-like, or some other carbon form. Just imagine finding tiny inclusions of water or diamond inside Martian rock samples hidden deep inside the rock", says Simo Huotari from the University of Helsinki.

The newly developed method will give insights into the molecular level structure of many other interesting materials ranging, for example, from novel functional nanomaterials to fuel cells and new types of batteries.



This work was carried out at beamline ID16.



Principal publication and authors
Direct tomography with chemical-bond contrast, S. Huotari (a,b), T. Pylkkänen (a,b), R. Verbeni (a), G. Monaco (a), K. Hämäläinen (b), Nature Materials, advanced online publication, 29 May 2011, DOI 10.1038/NMAT3031.
(a) ESRF
(b) Department of Physics, University of Helsinki (Finland)

####

About ESFR
The ESRF synchrotron is an ambitious project that represents a very real technological, scientific and human challenge. It could only be international.

In 1988, twelve European countries joined forces to create the synchrotron in Grenoble. Since then, seven more countries have joined the group. Together they create the indispensable synergy needed to carry out advanced scientific research.

For more information, please click here

Contacts:
Postal Address: ESRF, BP 220
38043 GRENOBLE CEDEX 9, FRANCE

Address:
ESRF
Polygone Scientifique
Louis Néel, 6 rue Jules Horowitz
38000 GRENOBLE, FRANCE

Phone / Fax: +33 (0)4 76 88 20 00 / 20 20

Copyright © ESFR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Direct tomography with chemical-bond contrast, S. Huotari (a,b), T. Pylkkänen (a,b), R. Verbeni (a), G. Monaco (a), K. Hämäläinen (b), Nature Materials, advanced online publication, 29 May 2011, DOI 10.1038/NMAT3031.

Related News Press

News and information

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

KaSAM-2014 International Conference (September 7-10, 2014, Kathmandu, Nepal) August 19th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Imaging

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

JPK reports on the use of AFM and advanced fluorescence microscopy at the University of Freiburg August 13th, 2014

Physics

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Discoveries

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Announcements

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Tools

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

JPK reports on the use of AFM and advanced fluorescence microscopy at the University of Freiburg August 13th, 2014

Phasefocus reports on the use of their high-precision Lens Profiler for measuring contact lens thickness at the Brien Holden Vision Institute in Sydney, Australia August 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE