Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Porous Nanoparticles Deliver Drug Cocktails to Tumors

Abstract:
Melding nanotechnology and medical research, researchers from Sandia National Laboratories, the University of New Mexico, and the UNM Cancer Research and Treatment Center have produced an effective strategy that uses nanoparticles to treat tumors with a mélange of anticancer agents. This strategy relies on using silica nanoparticles honeycombed with cavities that can store large amounts and varieties of drugs loaded inside a lipid-based nanoparticle known as a liposome.

Porous Nanoparticles Deliver Drug Cocktails to Tumors

Bethesda, MD | Posted on May 29th, 2011

"The enormous capacity of the nanoporous core, with its high surface area, combined with the improved targeting of an encapsulating lipid bilayer, permits a single 'protocell' loaded with a drug cocktail to kill a drug-resistant cancer cell," says team leader Jeff Brinker, who is the co-principal investigator of the University of New Mexico Cancer Nanotechnology Platform Partnership. "That's a millionfold increase in efficiency over comparable methods employing liposomes alone — without nanoparticles — as drug carriers." Dr. Brinker and his team published the results of their work in the journal Nature Materials.

The nanoparticles and the surrounding cell-like membranes formed from liposomes create what the researchers call a protocell: the membrane seals in the deadly cargo and is modified with targeting molecules that bind specifically to receptors overexpressed on the cancer cell's surface. The nanoparticles provide stability to the supported membrane and release the therapeutic cargo within the cell.

A current Food and Drug Administration-approved nanoparticle delivery strategy is to use liposomes themselves to contain and deliver the cargo. In a head-to-head comparison of targeted liposomes and protocells with identical membrane and peptide compositions, Dr. Brinker and colleagues report that the greater cargo capacity, stability, and targeting efficacy of protocells leads to a drug formulation that is much more effective at killing human liver cancer cells.

Another advantage to protocells over liposomes alone is that it is far easier to load drugs into the porous nanoparticles than it is with liposomes. Loading drugs into liposomes requires complex strategies that boost the cost of making those formulations. In contrast, loading the porous nanoparticles can be done by simply soaking the nanoparticles in a drug solution. The liposome then serves as a shield that restricts toxic chemotherapy drugs from leaking from the nanoparticle until the protocell binds to the cancer cell. This means that only low levels of anticancer agents, at most, escape into the blood stream or attack other cells.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.

As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives

ATTN: NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers."

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Laboratories

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

Govt.-Legislation/Regulation/Funding/Policy

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE