Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Porous Nanoparticles Deliver Drug Cocktails to Tumors

Abstract:
Melding nanotechnology and medical research, researchers from Sandia National Laboratories, the University of New Mexico, and the UNM Cancer Research and Treatment Center have produced an effective strategy that uses nanoparticles to treat tumors with a mélange of anticancer agents. This strategy relies on using silica nanoparticles honeycombed with cavities that can store large amounts and varieties of drugs loaded inside a lipid-based nanoparticle known as a liposome.

Porous Nanoparticles Deliver Drug Cocktails to Tumors

Bethesda, MD | Posted on May 29th, 2011

"The enormous capacity of the nanoporous core, with its high surface area, combined with the improved targeting of an encapsulating lipid bilayer, permits a single 'protocell' loaded with a drug cocktail to kill a drug-resistant cancer cell," says team leader Jeff Brinker, who is the co-principal investigator of the University of New Mexico Cancer Nanotechnology Platform Partnership. "That's a millionfold increase in efficiency over comparable methods employing liposomes alone — without nanoparticles — as drug carriers." Dr. Brinker and his team published the results of their work in the journal Nature Materials.

The nanoparticles and the surrounding cell-like membranes formed from liposomes create what the researchers call a protocell: the membrane seals in the deadly cargo and is modified with targeting molecules that bind specifically to receptors overexpressed on the cancer cell's surface. The nanoparticles provide stability to the supported membrane and release the therapeutic cargo within the cell.

A current Food and Drug Administration-approved nanoparticle delivery strategy is to use liposomes themselves to contain and deliver the cargo. In a head-to-head comparison of targeted liposomes and protocells with identical membrane and peptide compositions, Dr. Brinker and colleagues report that the greater cargo capacity, stability, and targeting efficacy of protocells leads to a drug formulation that is much more effective at killing human liver cancer cells.

Another advantage to protocells over liposomes alone is that it is far easier to load drugs into the porous nanoparticles than it is with liposomes. Loading drugs into liposomes requires complex strategies that boost the cost of making those formulations. In contrast, loading the porous nanoparticles can be done by simply soaking the nanoparticles in a drug solution. The liposome then serves as a shield that restricts toxic chemotherapy drugs from leaking from the nanoparticle until the protocell binds to the cancer cell. This means that only low levels of anticancer agents, at most, escape into the blood stream or attack other cells.

####

About The National Cancer Institute (NCI)
The NCI Alliance for Nanotechnology in Cancer is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat, and prevent cancer. Through its programs and initiatives, the Alliance is committed to building a community of researchers dedicated to using nanotechnology to advance the fight against cancer.

As part of the Center for Strategic Scientific Initiatives, the Alliance for Nanotechnology in Cancer works in concert with other NCI advanced technology initiatives to provide the scientific foundation and team science that is required to transform cancer research and care.

For more information, please click here

Contacts:
National Cancer Institute
Center for Strategic Scientific Initiatives

ATTN: NCI Office of Cancer Nanotechnology Research (OCNR)
Building 31, Room 10A52
31 Center Drive, MSC 2580
Bethesda, MD 20892-2580
Telephone: (301) 451-8983

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers."

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Laboratories

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Discovery in new material raises questions about theoretical models of superconductivity March 13th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Imaging the inner workings of a sodium-metal sulfide battery for first time: Understanding how the structural and chemical makeup of the material changes during the charge/discharge process could help scientists advance battery design for future energy storage needs March 9th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Nanomedicine

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project