Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > A Comparison of Multiwall Carbon Nanotubes and Stacked-Cup Carbon Nanotubes

May 28th, 2011

A Comparison of Multiwall Carbon Nanotubes and Stacked-Cup Carbon Nanotubes

Abstract:
Introduction

While carbon nanotubes (CNT) and carbon nanofibers (CNF) are both hollow, nanometerals in scale, and produced in a similar manner, there are distinct differences which significantly impact their performance and ability to be processed. The primary differences between the materials are morphology, size, ease of processing, and price.

Morphology

Carbon nanofibers, also known as Stacked-Cup Carbon Nanotubes, have a unique morphology in that graphene planes are canted from the fiber axis, resulting in exposed edge planes on the interior and exterior surfaces of the fiber. CNTs, on the other hand, typically resemble an assembly of concentric cylinders of graphene. To illustrate the difference in morphology, Figure 1 below shows a side by side comparison of A) Multi-walled carbon nanotubes and B) stacked cup carbon nanotubes.

Source:
nanopaprika.eu

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Blog sites

Graphene-based Magnetoresistance Sensor 200 Times as Sensitive as Silicon November 1st, 2015

Can graphene make the world’s water clean? July 13th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Graphene chips are close to significant commercialization October 1st, 2014

Nanotubes/Buckyballs/Fullerenes

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic