Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanostructures improve solar cell efficiency

Abstract:
To make solar cells a competitive alternative to other renewable energy sources, researchers are investigating different alternatives. A step in the right direction is through new processes that change the surfaces of silicon solar cells. By creating different nanostructures on the surfaces, the energy harvesting properties of solar cells can be improved.

Nanostructures improve solar cell efficiency

Italy | Posted on May 28th, 2011

Within the EU-funded research project N2P (Nano To Production) researchers work on nanostructured surfaces of solar cells. At the Fraunhofer Institute in Dresden, Germany, researchers have focused on the development of atmospheric pressure plasma chemical etching (AP-PCE) processes. This technology is as an alternative to the wet chemical processing approach, used in the solar industry. The advantages of AP-PCE over the etching technology based on wet chemical processing are, for example, reduced chemical waste, cost efficiency and reduced handling. AP-PCE is used for modifying crystalline silicon solar wafers‚ surfaces down to the nanoscale. The researchers have achieved a one-percent improvement in solar cell efficiency, from 16 to 17 percent, by making the rear surface very smooth.

Within the N2P research project scientists at the École Polytechnique Fédérale de Lausanne (EPFL) in Neuchatel, Switzerland, are instead working on improving different solar cells, the thin film silicon solar cells. Currently, these solar cells can only harvest about seven percent of the sunlight, which is about 40 percent less efficient compared to conventional wafer silicon cells. However, the thin film solar cells are cheaper and more eco-friendly because their production demands less time, material and energy. The researchers in Switzerland are changing the top glass structure of the solar cell, by depositing a layer of nanosized crystals from a transparent conductive oxide (TCO) onto the glass. This layer gives a high scattering effect and the light beam generates more electrons when it travels a longer distance though the cell, which enhances the cell‚s light absorption. The researchers have managed to achieve a 30 percent increase in efficiency in comparison with stand
ard thin film solar cells.

Another process that could increase the efficiency of thin film silicon solar cells, through changing the surface structures, includes ultrafast pulsed laser irradiation. Researchers at Singapore Institute of Manufacturing Technology have shown that this irradiation makes a nanospike pattern on the silicon surface which reduces reflection of the light from the surface. More light will therefore be absorbed.

New processes which create nanostructured surfaces are improving solar cell efficiency substantially. With lower manufacturing costs in the future the interest in solar cell investments may increase impressively.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: +39 02 7002572
Fax: +39 02 7002540
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Discoveries

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Announcements

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Energy

UC research partnership explores how to best harness solar power March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Solar/Photovoltaic

UC research partnership explores how to best harness solar power March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE