Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SPP Process Technology Systems (SPTS) and Australia's Griffith University Sign Joint Development Agreement to Develop Silicon Carbide (SiC) on Silicon Technology

Abstract:
Three-Year Agreement Aims to Commercialise SiC-On-Si as a Viable Semiconductor Material for LED, Power and MEMS Devices.

SPP Process Technology Systems (SPTS) and Australia's Griffith University Sign Joint Development Agreement to Develop Silicon Carbide (SiC) on Silicon Technology

San Jose, CA and Brisbane, Australia | Posted on May 27th, 2011

SPP Process Technology Systems (SPTS), a leading manufacturer of plasma etch and deposition, and thermal processing equipment for the semiconductor and related industries, and Griffith University in Australia today announced a joint development agreement (JDA) targeting the commercialization of Silicon Carbide (SiC) on Silicon (Si) technology. SiC on Si substrates have a wide variety of applications for the rapidly growing light-emitting diode (LED), micro-electro-mechanical systems (MEMS) and Power markets.

SiC is an important substrate for growing the GaN films used to manufacture LEDs. The increased radiation hardness, mechanical strength and thermal properties of SiC also make it a suitable replacement for silicon in MEMS devices for harsh environments. In addition, SiC is used to create semiconductor devices for high power, high frequency applications where the electrical properties of SiC are significantly superior to common silicon. Technology created by the research team at Queensland Microtechnology Facility (QMF) at the Griffith University's Queensland Micro- and Nanotechnology Centre (QMNC), has demonstrated the ability to grow crystalline SiC directly onto low cost silicon wafers. Through the JDA, SPTS will develop the thermal process and equipment expertise necessary to commercialize the technology.

Three key technologies required for SiC on Si devices are SiC deposition, etch and oxidation. The QMNC has commercially orientated research into all these areas. "The JDA enables transfer of this SiC deposition process technology to device research and development activities, and provides a bridge to volume production through batch processing for up to 300mm diameter Si wafers. SPTS's strength in thermal processing makes them an attractive partner," said Alan Iacopi, Operations Director of QMNC. "This JDA is an important step in the commercialization of our SiC research efforts, especially with a partner with the global reach of SPTS" agreed Sima Dimitrijev, Project Leader and Deputy Director of QMNC.

"As a market leader in providing capital equipment to the MEMS, LED and Power markets, SPTS is constantly looking at cutting-edge development opportunities. We are very pleased to have this opportunity to work with leading researchers at Griffith University to commercialize their SiC on Si technology," said William Johnson, president and CEO of SPTS. "Providing production knowledge to this collaboration and helping to develop and deliver new materials processing technology is an important business strategy. This JDA further enhances the portfolio of offerings to our served markets and will help to broaden our customer base."

####

About SPP Process Technology Systems
SPP Process Technology Systems was established in October 2009 as the vehicle for the merger of Surface Technology Systems and acquired assets of Aviza Technology. The company is a wholly-owned subsidiary of Sumitomo Precision Products Co., Ltd., and designs, manufactures, sells, and supports advanced semiconductor capital equipment and process technologies for the global semiconductor industry and related markets. These products are used in a variety of market segments, including R&D, data storage, MEMS and nanotechnology, advanced 3-D packaging, LEDs, and power integrated circuits for communications.

For more information about SPTS, please visit www.spp-pts.com.

About QMNC and QMF

The Queensland Micro- and Nanotechnology Centre is a science and engineering research centre based at Griffith University focusing on micro- and nanotechnology issues integral to the development of clean and intelligent systems. The Centre brings together researchers with expertise in materials development, sensing, microelectronic engineering and microtechnology and the fundamental theory of condensed matter, across the disciplines of physics, chemistry, applied mathematics and engineering. The Queensland Microtechnology Facility, within the QMNC, is focused on leading SiC on Si technology to commercialisation. Funded by Queensland State Government and Australia's National Fabrication Facility, it houses a large silicon wafer fabrication processing capability and enables research and development of SiC on Si material for mechanical and semiconductor devices.

For more information please visit www.griffith.edu.au/qmnc.

For more information, please click here

Contacts:
SPP Process Technology Systems (SPTS)
Evelyn Tay
+ 65-8383-0393

www.spp-pts.com

Griffith University
Debra Bernhardt
+61 7-3735-3921

www.griffith.edu.au/qmnc

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

New conductive coatings for flexible touchscreens presentation at nano tech 2015 in Japan January 22nd, 2015

Nano - "Green" metal oxides ... January 13th, 2015

MEMS

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

MEMS Industry Group's 10th Annual Executive Conference Showcases Rapid Innovation in MEMS/Sensors: Emphasizes Spirit of Collaboration, Supporting First Open-Source Algorithm Community, New Standardization Efforts November 10th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Chip Technology

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Alliances/Partnerships/Distributorships

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

GLOBALFOUNDRIES and Linear Dimensions to Offer Joint Analog Solution For Fast-Growing Wearables and MEMs Sensors Markets January 9th, 2015

Nanowire clothing could keep people warm -- without heating everything else January 7th, 2015

Research partnerships

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE