Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SPP Process Technology Systems (SPTS) and Australia's Griffith University Sign Joint Development Agreement to Develop Silicon Carbide (SiC) on Silicon Technology

Abstract:
Three-Year Agreement Aims to Commercialise SiC-On-Si as a Viable Semiconductor Material for LED, Power and MEMS Devices.

SPP Process Technology Systems (SPTS) and Australia's Griffith University Sign Joint Development Agreement to Develop Silicon Carbide (SiC) on Silicon Technology

San Jose, CA and Brisbane, Australia | Posted on May 27th, 2011

SPP Process Technology Systems (SPTS), a leading manufacturer of plasma etch and deposition, and thermal processing equipment for the semiconductor and related industries, and Griffith University in Australia today announced a joint development agreement (JDA) targeting the commercialization of Silicon Carbide (SiC) on Silicon (Si) technology. SiC on Si substrates have a wide variety of applications for the rapidly growing light-emitting diode (LED), micro-electro-mechanical systems (MEMS) and Power markets.

SiC is an important substrate for growing the GaN films used to manufacture LEDs. The increased radiation hardness, mechanical strength and thermal properties of SiC also make it a suitable replacement for silicon in MEMS devices for harsh environments. In addition, SiC is used to create semiconductor devices for high power, high frequency applications where the electrical properties of SiC are significantly superior to common silicon. Technology created by the research team at Queensland Microtechnology Facility (QMF) at the Griffith University's Queensland Micro- and Nanotechnology Centre (QMNC), has demonstrated the ability to grow crystalline SiC directly onto low cost silicon wafers. Through the JDA, SPTS will develop the thermal process and equipment expertise necessary to commercialize the technology.

Three key technologies required for SiC on Si devices are SiC deposition, etch and oxidation. The QMNC has commercially orientated research into all these areas. "The JDA enables transfer of this SiC deposition process technology to device research and development activities, and provides a bridge to volume production through batch processing for up to 300mm diameter Si wafers. SPTS's strength in thermal processing makes them an attractive partner," said Alan Iacopi, Operations Director of QMNC. "This JDA is an important step in the commercialization of our SiC research efforts, especially with a partner with the global reach of SPTS" agreed Sima Dimitrijev, Project Leader and Deputy Director of QMNC.

"As a market leader in providing capital equipment to the MEMS, LED and Power markets, SPTS is constantly looking at cutting-edge development opportunities. We are very pleased to have this opportunity to work with leading researchers at Griffith University to commercialize their SiC on Si technology," said William Johnson, president and CEO of SPTS. "Providing production knowledge to this collaboration and helping to develop and deliver new materials processing technology is an important business strategy. This JDA further enhances the portfolio of offerings to our served markets and will help to broaden our customer base."

####

About SPP Process Technology Systems
SPP Process Technology Systems was established in October 2009 as the vehicle for the merger of Surface Technology Systems and acquired assets of Aviza Technology. The company is a wholly-owned subsidiary of Sumitomo Precision Products Co., Ltd., and designs, manufactures, sells, and supports advanced semiconductor capital equipment and process technologies for the global semiconductor industry and related markets. These products are used in a variety of market segments, including R&D, data storage, MEMS and nanotechnology, advanced 3-D packaging, LEDs, and power integrated circuits for communications.

For more information about SPTS, please visit www.spp-pts.com.

About QMNC and QMF

The Queensland Micro- and Nanotechnology Centre is a science and engineering research centre based at Griffith University focusing on micro- and nanotechnology issues integral to the development of clean and intelligent systems. The Centre brings together researchers with expertise in materials development, sensing, microelectronic engineering and microtechnology and the fundamental theory of condensed matter, across the disciplines of physics, chemistry, applied mathematics and engineering. The Queensland Microtechnology Facility, within the QMNC, is focused on leading SiC on Si technology to commercialisation. Funded by Queensland State Government and Australia's National Fabrication Facility, it houses a large silicon wafer fabrication processing capability and enables research and development of SiC on Si material for mechanical and semiconductor devices.

For more information please visit www.griffith.edu.au/qmnc.

For more information, please click here

Contacts:
SPP Process Technology Systems (SPTS)
Evelyn Tay
+ 65-8383-0393

www.spp-pts.com

Griffith University
Debra Bernhardt
+61 7-3735-3921

www.griffith.edu.au/qmnc

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

CLAIRE brings electron microscopy to soft materials: Berkeley researchers develop breakthrough technique for noninvasive nanoscale imaging May 14th, 2015

QD Vision to Showcase Quantum Dot “Firsts” at Display Week 2015: Executives will present, demo current and future quantum dot technology May 13th, 2015

MEMS

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

ASIC Development for MEMS Applications: A Platform Approach March 25th, 2015

Chip Technology

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Announcements

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project