Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > SPP Process Technology Systems (SPTS) and Australia's Griffith University Sign Joint Development Agreement to Develop Silicon Carbide (SiC) on Silicon Technology

Abstract:
Three-Year Agreement Aims to Commercialise SiC-On-Si as a Viable Semiconductor Material for LED, Power and MEMS Devices.

SPP Process Technology Systems (SPTS) and Australia's Griffith University Sign Joint Development Agreement to Develop Silicon Carbide (SiC) on Silicon Technology

San Jose, CA and Brisbane, Australia | Posted on May 27th, 2011

SPP Process Technology Systems (SPTS), a leading manufacturer of plasma etch and deposition, and thermal processing equipment for the semiconductor and related industries, and Griffith University in Australia today announced a joint development agreement (JDA) targeting the commercialization of Silicon Carbide (SiC) on Silicon (Si) technology. SiC on Si substrates have a wide variety of applications for the rapidly growing light-emitting diode (LED), micro-electro-mechanical systems (MEMS) and Power markets.

SiC is an important substrate for growing the GaN films used to manufacture LEDs. The increased radiation hardness, mechanical strength and thermal properties of SiC also make it a suitable replacement for silicon in MEMS devices for harsh environments. In addition, SiC is used to create semiconductor devices for high power, high frequency applications where the electrical properties of SiC are significantly superior to common silicon. Technology created by the research team at Queensland Microtechnology Facility (QMF) at the Griffith University's Queensland Micro- and Nanotechnology Centre (QMNC), has demonstrated the ability to grow crystalline SiC directly onto low cost silicon wafers. Through the JDA, SPTS will develop the thermal process and equipment expertise necessary to commercialize the technology.

Three key technologies required for SiC on Si devices are SiC deposition, etch and oxidation. The QMNC has commercially orientated research into all these areas. "The JDA enables transfer of this SiC deposition process technology to device research and development activities, and provides a bridge to volume production through batch processing for up to 300mm diameter Si wafers. SPTS's strength in thermal processing makes them an attractive partner," said Alan Iacopi, Operations Director of QMNC. "This JDA is an important step in the commercialization of our SiC research efforts, especially with a partner with the global reach of SPTS" agreed Sima Dimitrijev, Project Leader and Deputy Director of QMNC.

"As a market leader in providing capital equipment to the MEMS, LED and Power markets, SPTS is constantly looking at cutting-edge development opportunities. We are very pleased to have this opportunity to work with leading researchers at Griffith University to commercialize their SiC on Si technology," said William Johnson, president and CEO of SPTS. "Providing production knowledge to this collaboration and helping to develop and deliver new materials processing technology is an important business strategy. This JDA further enhances the portfolio of offerings to our served markets and will help to broaden our customer base."

####

About SPP Process Technology Systems
SPP Process Technology Systems was established in October 2009 as the vehicle for the merger of Surface Technology Systems and acquired assets of Aviza Technology. The company is a wholly-owned subsidiary of Sumitomo Precision Products Co., Ltd., and designs, manufactures, sells, and supports advanced semiconductor capital equipment and process technologies for the global semiconductor industry and related markets. These products are used in a variety of market segments, including R&D, data storage, MEMS and nanotechnology, advanced 3-D packaging, LEDs, and power integrated circuits for communications.

For more information about SPTS, please visit www.spp-pts.com.

About QMNC and QMF

The Queensland Micro- and Nanotechnology Centre is a science and engineering research centre based at Griffith University focusing on micro- and nanotechnology issues integral to the development of clean and intelligent systems. The Centre brings together researchers with expertise in materials development, sensing, microelectronic engineering and microtechnology and the fundamental theory of condensed matter, across the disciplines of physics, chemistry, applied mathematics and engineering. The Queensland Microtechnology Facility, within the QMNC, is focused on leading SiC on Si technology to commercialisation. Funded by Queensland State Government and Australia's National Fabrication Facility, it houses a large silicon wafer fabrication processing capability and enables research and development of SiC on Si material for mechanical and semiconductor devices.

For more information please visit www.griffith.edu.au/qmnc.

For more information, please click here

Contacts:
SPP Process Technology Systems (SPTS)
Evelyn Tay
+ 65-8383-0393

www.spp-pts.com

Griffith University
Debra Bernhardt
+61 7-3735-3921

www.griffith.edu.au/qmnc

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Copper shines as flexible conductor August 29th, 2014

MEMS

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Mirrorcle Technologies Opens New Company Headquarters May 27th, 2014

Chip Technology

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Announcements

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Alliances/Partnerships/Distributorships

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE