Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imec processes first power devices on 200mm CMOS-compatible GaN-on-Si

Imec processes first power devices on 200mm CMOS-compatible GaN-on-Si
Imec processes first power devices on 200mm CMOS-compatible GaN-on-Si

Abstract:
Imec and its partners in the GaN industrial affiliation program (IIAP) have produced device-quality wafers with GaN/AlGaN layers on 200mm silicon wafers. With these wafers, functional GaN MISHEMTs were processed using standard CMOS tools. The used processes are compatible with the strict contamination rules in a standard CMOS processing line (e.g. no use of gold). These first GaN devices on 200mm wafers are an important milestone on the path to cost-effective production of power devices in high-productivity 200mm fabs.

Imec processes first power devices on 200mm CMOS-compatible GaN-on-Si

Leuven, Belgium | Posted on May 26th, 2011

GaN is a promising material for next-generation power devices with a performance beyond what is possible with silicon. Imec has recently succeeded in producing 200mm GaN-on-Si wafers with crack-free surfaces and a bow of less than 50µm. The wafers were made using an advanced MOCVD system from Applied Materials. The ability to use 200mm wafers is an important milestone, because it brings processing in reach of regular high-productivity 200mm fabs, allowing for an important cost reduction compared to processing smaller wafers on dedicated processing lines.

A second prerequisite for cost-effective processing, next to the wafer size, is that power devices can be fabricated with processes that are compatible with standard CMOS processes and tools. Imec proved this by processing its GaN-on-Si wafers using standard CMOS tools, yielding functional GaN MISHEMTs (metal-insulator-semiconductor HEMT). All equipment was verified for its capability to handle the wafers, and required only minimal adjustments in software and hardware. Conventionally, gold is used for ohmic contacts and gate structures in power devices, but it makes GaN processing incompatible with conventional CMOS processing. To overcome this, imec based the ohmic contact formation on an Au-free metallization system, and modified the Schottky gate to a gate dielectric based gold-free metal-insulator-semiconductor (MIS) structure. This introduction of the MISHEMT structure had the added advantage of reducing the high leakage current of conventional HEMTs.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.).

For more information, please click here

Contacts:
Katrien Marent
Director of External Communications
T: +32 16 28 18 80
Mobile: +32 474 30 28 66

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Chip Technology

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Announcements

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project